| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gicref | Structured version Visualization version GIF version | ||
| Description: Isomorphism is reflexive. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| Ref | Expression |
|---|---|
| gicref | ⊢ (𝑅 ∈ Grp → 𝑅 ≃𝑔 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | 1 | idghm 19128 | . . 3 ⊢ (𝑅 ∈ Grp → ( I ↾ (Base‘𝑅)) ∈ (𝑅 GrpHom 𝑅)) |
| 3 | cnvresid 6565 | . . . 4 ⊢ ◡( I ↾ (Base‘𝑅)) = ( I ↾ (Base‘𝑅)) | |
| 4 | 3, 2 | eqeltrid 2832 | . . 3 ⊢ (𝑅 ∈ Grp → ◡( I ↾ (Base‘𝑅)) ∈ (𝑅 GrpHom 𝑅)) |
| 5 | isgim2 19162 | . . 3 ⊢ (( I ↾ (Base‘𝑅)) ∈ (𝑅 GrpIso 𝑅) ↔ (( I ↾ (Base‘𝑅)) ∈ (𝑅 GrpHom 𝑅) ∧ ◡( I ↾ (Base‘𝑅)) ∈ (𝑅 GrpHom 𝑅))) | |
| 6 | 2, 4, 5 | sylanbrc 583 | . 2 ⊢ (𝑅 ∈ Grp → ( I ↾ (Base‘𝑅)) ∈ (𝑅 GrpIso 𝑅)) |
| 7 | brgici 19168 | . 2 ⊢ (( I ↾ (Base‘𝑅)) ∈ (𝑅 GrpIso 𝑅) → 𝑅 ≃𝑔 𝑅) | |
| 8 | 6, 7 | syl 17 | 1 ⊢ (𝑅 ∈ Grp → 𝑅 ≃𝑔 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5095 I cid 5517 ◡ccnv 5622 ↾ cres 5625 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 Grpcgrp 18830 GrpHom cghm 19109 GrpIso cgim 19154 ≃𝑔 cgic 19155 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-1o 8395 df-map 8762 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-ghm 19110 df-gim 19156 df-gic 19157 |
| This theorem is referenced by: gicer 19174 |
| Copyright terms: Public domain | W3C validator |