| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gicref | Structured version Visualization version GIF version | ||
| Description: Isomorphism is reflexive. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| Ref | Expression |
|---|---|
| gicref | ⊢ (𝑅 ∈ Grp → 𝑅 ≃𝑔 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | 1 | idghm 19141 | . . 3 ⊢ (𝑅 ∈ Grp → ( I ↾ (Base‘𝑅)) ∈ (𝑅 GrpHom 𝑅)) |
| 3 | cnvresid 6560 | . . . 4 ⊢ ◡( I ↾ (Base‘𝑅)) = ( I ↾ (Base‘𝑅)) | |
| 4 | 3, 2 | eqeltrid 2835 | . . 3 ⊢ (𝑅 ∈ Grp → ◡( I ↾ (Base‘𝑅)) ∈ (𝑅 GrpHom 𝑅)) |
| 5 | isgim2 19175 | . . 3 ⊢ (( I ↾ (Base‘𝑅)) ∈ (𝑅 GrpIso 𝑅) ↔ (( I ↾ (Base‘𝑅)) ∈ (𝑅 GrpHom 𝑅) ∧ ◡( I ↾ (Base‘𝑅)) ∈ (𝑅 GrpHom 𝑅))) | |
| 6 | 2, 4, 5 | sylanbrc 583 | . 2 ⊢ (𝑅 ∈ Grp → ( I ↾ (Base‘𝑅)) ∈ (𝑅 GrpIso 𝑅)) |
| 7 | brgici 19181 | . 2 ⊢ (( I ↾ (Base‘𝑅)) ∈ (𝑅 GrpIso 𝑅) → 𝑅 ≃𝑔 𝑅) | |
| 8 | 6, 7 | syl 17 | 1 ⊢ (𝑅 ∈ Grp → 𝑅 ≃𝑔 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 class class class wbr 5091 I cid 5510 ◡ccnv 5615 ↾ cres 5618 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 Grpcgrp 18843 GrpHom cghm 19122 GrpIso cgim 19167 ≃𝑔 cgic 19168 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-1o 8385 df-map 8752 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-grp 18846 df-ghm 19123 df-gim 19169 df-gic 19170 |
| This theorem is referenced by: gicer 19187 |
| Copyright terms: Public domain | W3C validator |