| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gicref | Structured version Visualization version GIF version | ||
| Description: Isomorphism is reflexive. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| Ref | Expression |
|---|---|
| gicref | ⊢ (𝑅 ∈ Grp → 𝑅 ≃𝑔 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | 1 | idghm 19145 | . . 3 ⊢ (𝑅 ∈ Grp → ( I ↾ (Base‘𝑅)) ∈ (𝑅 GrpHom 𝑅)) |
| 3 | cnvresid 6565 | . . . 4 ⊢ ◡( I ↾ (Base‘𝑅)) = ( I ↾ (Base‘𝑅)) | |
| 4 | 3, 2 | eqeltrid 2837 | . . 3 ⊢ (𝑅 ∈ Grp → ◡( I ↾ (Base‘𝑅)) ∈ (𝑅 GrpHom 𝑅)) |
| 5 | isgim2 19179 | . . 3 ⊢ (( I ↾ (Base‘𝑅)) ∈ (𝑅 GrpIso 𝑅) ↔ (( I ↾ (Base‘𝑅)) ∈ (𝑅 GrpHom 𝑅) ∧ ◡( I ↾ (Base‘𝑅)) ∈ (𝑅 GrpHom 𝑅))) | |
| 6 | 2, 4, 5 | sylanbrc 583 | . 2 ⊢ (𝑅 ∈ Grp → ( I ↾ (Base‘𝑅)) ∈ (𝑅 GrpIso 𝑅)) |
| 7 | brgici 19185 | . 2 ⊢ (( I ↾ (Base‘𝑅)) ∈ (𝑅 GrpIso 𝑅) → 𝑅 ≃𝑔 𝑅) | |
| 8 | 6, 7 | syl 17 | 1 ⊢ (𝑅 ∈ Grp → 𝑅 ≃𝑔 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 class class class wbr 5093 I cid 5513 ◡ccnv 5618 ↾ cres 5621 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 Grpcgrp 18848 GrpHom cghm 19126 GrpIso cgim 19171 ≃𝑔 cgic 19172 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-1o 8391 df-map 8758 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-grp 18851 df-ghm 19127 df-gim 19173 df-gic 19174 |
| This theorem is referenced by: gicer 19191 |
| Copyright terms: Public domain | W3C validator |