MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gicref Structured version   Visualization version   GIF version

Theorem gicref 19291
Description: Isomorphism is reflexive. (Contributed by Mario Carneiro, 21-Apr-2016.)
Assertion
Ref Expression
gicref (𝑅 ∈ Grp → 𝑅𝑔 𝑅)

Proof of Theorem gicref
StepHypRef Expression
1 eqid 2736 . . . 4 (Base‘𝑅) = (Base‘𝑅)
21idghm 19250 . . 3 (𝑅 ∈ Grp → ( I ↾ (Base‘𝑅)) ∈ (𝑅 GrpHom 𝑅))
3 cnvresid 6644 . . . 4 ( I ↾ (Base‘𝑅)) = ( I ↾ (Base‘𝑅))
43, 2eqeltrid 2844 . . 3 (𝑅 ∈ Grp → ( I ↾ (Base‘𝑅)) ∈ (𝑅 GrpHom 𝑅))
5 isgim2 19284 . . 3 (( I ↾ (Base‘𝑅)) ∈ (𝑅 GrpIso 𝑅) ↔ (( I ↾ (Base‘𝑅)) ∈ (𝑅 GrpHom 𝑅) ∧ ( I ↾ (Base‘𝑅)) ∈ (𝑅 GrpHom 𝑅)))
62, 4, 5sylanbrc 583 . 2 (𝑅 ∈ Grp → ( I ↾ (Base‘𝑅)) ∈ (𝑅 GrpIso 𝑅))
7 brgici 19290 . 2 (( I ↾ (Base‘𝑅)) ∈ (𝑅 GrpIso 𝑅) → 𝑅𝑔 𝑅)
86, 7syl 17 1 (𝑅 ∈ Grp → 𝑅𝑔 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107   class class class wbr 5142   I cid 5576  ccnv 5683  cres 5686  cfv 6560  (class class class)co 7432  Basecbs 17248  Grpcgrp 18952   GrpHom cghm 19231   GrpIso cgim 19276  𝑔 cgic 19277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-1st 8015  df-2nd 8016  df-1o 8507  df-map 8869  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-grp 18955  df-ghm 19232  df-gim 19278  df-gic 19279
This theorem is referenced by:  gicer  19296
  Copyright terms: Public domain W3C validator