MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gtso Structured version   Visualization version   GIF version

Theorem gtso 11261
Description: 'Greater than' is a strict ordering. (Contributed by JJ, 11-Oct-2018.)
Assertion
Ref Expression
gtso < Or ℝ

Proof of Theorem gtso
StepHypRef Expression
1 ltso 11260 . 2 < Or ℝ
2 cnvso 6263 . 2 ( < Or ℝ ↔ < Or ℝ)
31, 2mpbi 230 1 < Or ℝ
Colors of variables: wff setvar class
Syntax hints:   Or wor 5547  ccnv 5639  cr 11073   < clt 11214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-resscn 11131  ax-pre-lttri 11148  ax-pre-lttrn 11149
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-po 5548  df-so 5549  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-pnf 11216  df-mnf 11217  df-ltxr 11219
This theorem is referenced by:  infrenegsup  12172  dvlt0  25916  erdszelem9  35186  erdszelem11  35188  rencldnfilem  42801
  Copyright terms: Public domain W3C validator