Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrle Structured version   Visualization version   GIF version

Theorem cvrle 39220
Description: The covers relation implies the "less than or equal to" relation. (Contributed by NM, 12-Oct-2011.)
Hypotheses
Ref Expression
cvrle.b 𝐵 = (Base‘𝐾)
cvrle.l = (le‘𝐾)
cvrle.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
cvrle (((𝐾𝐴𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 𝑌)

Proof of Theorem cvrle
StepHypRef Expression
1 cvrle.b . . 3 𝐵 = (Base‘𝐾)
2 eqid 2734 . . 3 (lt‘𝐾) = (lt‘𝐾)
3 cvrle.c . . 3 𝐶 = ( ⋖ ‘𝐾)
41, 2, 3cvrlt 39212 . 2 (((𝐾𝐴𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → 𝑋(lt‘𝐾)𝑌)
5 cvrle.l . . . 4 = (le‘𝐾)
65, 2pltval 18351 . . 3 ((𝐾𝐴𝑋𝐵𝑌𝐵) → (𝑋(lt‘𝐾)𝑌 ↔ (𝑋 𝑌𝑋𝑌)))
76simprbda 498 . 2 (((𝐾𝐴𝑋𝐵𝑌𝐵) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑋 𝑌)
84, 7syldan 591 1 (((𝐾𝐴𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2931   class class class wbr 5125  cfv 6542  Basecbs 17230  lecple 17284  ltcplt 18329  ccvr 39204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-iota 6495  df-fun 6544  df-fv 6550  df-plt 18349  df-covers 39208
This theorem is referenced by:  cvrnbtwn4  39221  cvrcmp  39225  atcvrj2b  39375  atexchcvrN  39383  llncmp  39465  llncvrlpln  39501  lplncmp  39505  lplncvrlvol  39559  lvolcmp  39560
  Copyright terms: Public domain W3C validator