![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvrle | Structured version Visualization version GIF version |
Description: The covers relation implies the "less than or equal to" relation. (Contributed by NM, 12-Oct-2011.) |
Ref | Expression |
---|---|
cvrle.b | ⊢ 𝐵 = (Base‘𝐾) |
cvrle.l | ⊢ ≤ = (le‘𝐾) |
cvrle.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
Ref | Expression |
---|---|
cvrle | ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 ≤ 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvrle.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2803 | . . 3 ⊢ (lt‘𝐾) = (lt‘𝐾) | |
3 | cvrle.c | . . 3 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
4 | 1, 2, 3 | cvrlt 35295 | . 2 ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → 𝑋(lt‘𝐾)𝑌) |
5 | cvrle.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
6 | 5, 2 | pltval 17279 | . . 3 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋(lt‘𝐾)𝑌 ↔ (𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌))) |
7 | 6 | simprbda 493 | . 2 ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑋 ≤ 𝑌) |
8 | 4, 7 | syldan 586 | 1 ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 ≤ 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ≠ wne 2975 class class class wbr 4847 ‘cfv 6105 Basecbs 16188 lecple 16278 ltcplt 17260 ⋖ ccvr 35287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2379 ax-ext 2781 ax-sep 4979 ax-nul 4987 ax-pow 5039 ax-pr 5101 ax-un 7187 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2593 df-eu 2611 df-clab 2790 df-cleq 2796 df-clel 2799 df-nfc 2934 df-ne 2976 df-ral 3098 df-rex 3099 df-rab 3102 df-v 3391 df-sbc 3638 df-dif 3776 df-un 3778 df-in 3780 df-ss 3787 df-nul 4120 df-if 4282 df-pw 4355 df-sn 4373 df-pr 4375 df-op 4379 df-uni 4633 df-br 4848 df-opab 4910 df-mpt 4927 df-id 5224 df-xp 5322 df-rel 5323 df-cnv 5324 df-co 5325 df-dm 5326 df-iota 6068 df-fun 6107 df-fv 6113 df-plt 17277 df-covers 35291 |
This theorem is referenced by: cvrnbtwn4 35304 cvrcmp 35308 atcvrj2b 35457 atexchcvrN 35465 llncmp 35547 llncvrlpln 35583 lplncmp 35587 lplncvrlvol 35641 lvolcmp 35642 |
Copyright terms: Public domain | W3C validator |