Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvrle | Structured version Visualization version GIF version |
Description: The covers relation implies the "less than or equal to" relation. (Contributed by NM, 12-Oct-2011.) |
Ref | Expression |
---|---|
cvrle.b | ⊢ 𝐵 = (Base‘𝐾) |
cvrle.l | ⊢ ≤ = (le‘𝐾) |
cvrle.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
Ref | Expression |
---|---|
cvrle | ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 ≤ 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvrle.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2736 | . . 3 ⊢ (lt‘𝐾) = (lt‘𝐾) | |
3 | cvrle.c | . . 3 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
4 | 1, 2, 3 | cvrlt 37530 | . 2 ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → 𝑋(lt‘𝐾)𝑌) |
5 | cvrle.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
6 | 5, 2 | pltval 18139 | . . 3 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋(lt‘𝐾)𝑌 ↔ (𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌))) |
7 | 6 | simprbda 499 | . 2 ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑋 ≤ 𝑌) |
8 | 4, 7 | syldan 591 | 1 ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 ≤ 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 class class class wbr 5089 ‘cfv 6473 Basecbs 17001 lecple 17058 ltcplt 18115 ⋖ ccvr 37522 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-mpt 5173 df-id 5512 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6425 df-fun 6475 df-fv 6481 df-plt 18137 df-covers 37526 |
This theorem is referenced by: cvrnbtwn4 37539 cvrcmp 37543 atcvrj2b 37693 atexchcvrN 37701 llncmp 37783 llncvrlpln 37819 lplncmp 37823 lplncvrlvol 37877 lvolcmp 37878 |
Copyright terms: Public domain | W3C validator |