| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cvrle | Structured version Visualization version GIF version | ||
| Description: The covers relation implies the "less than or equal to" relation. (Contributed by NM, 12-Oct-2011.) |
| Ref | Expression |
|---|---|
| cvrle.b | ⊢ 𝐵 = (Base‘𝐾) |
| cvrle.l | ⊢ ≤ = (le‘𝐾) |
| cvrle.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
| Ref | Expression |
|---|---|
| cvrle | ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 ≤ 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvrle.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | eqid 2733 | . . 3 ⊢ (lt‘𝐾) = (lt‘𝐾) | |
| 3 | cvrle.c | . . 3 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
| 4 | 1, 2, 3 | cvrlt 39389 | . 2 ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → 𝑋(lt‘𝐾)𝑌) |
| 5 | cvrle.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 6 | 5, 2 | pltval 18238 | . . 3 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋(lt‘𝐾)𝑌 ↔ (𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌))) |
| 7 | 6 | simprbda 498 | . 2 ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑋 ≤ 𝑌) |
| 8 | 4, 7 | syldan 591 | 1 ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 ≤ 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 class class class wbr 5093 ‘cfv 6486 Basecbs 17122 lecple 17170 ltcplt 18216 ⋖ ccvr 39381 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 df-plt 18236 df-covers 39385 |
| This theorem is referenced by: cvrnbtwn4 39398 cvrcmp 39402 atcvrj2b 39551 atexchcvrN 39559 llncmp 39641 llncvrlpln 39677 lplncmp 39681 lplncvrlvol 39735 lvolcmp 39736 |
| Copyright terms: Public domain | W3C validator |