Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrle Structured version   Visualization version   GIF version

Theorem cvrle 36413
Description: The covers relation implies the "less than or equal to" relation. (Contributed by NM, 12-Oct-2011.)
Hypotheses
Ref Expression
cvrle.b 𝐵 = (Base‘𝐾)
cvrle.l = (le‘𝐾)
cvrle.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
cvrle (((𝐾𝐴𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 𝑌)

Proof of Theorem cvrle
StepHypRef Expression
1 cvrle.b . . 3 𝐵 = (Base‘𝐾)
2 eqid 2821 . . 3 (lt‘𝐾) = (lt‘𝐾)
3 cvrle.c . . 3 𝐶 = ( ⋖ ‘𝐾)
41, 2, 3cvrlt 36405 . 2 (((𝐾𝐴𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → 𝑋(lt‘𝐾)𝑌)
5 cvrle.l . . . 4 = (le‘𝐾)
65, 2pltval 17569 . . 3 ((𝐾𝐴𝑋𝐵𝑌𝐵) → (𝑋(lt‘𝐾)𝑌 ↔ (𝑋 𝑌𝑋𝑌)))
76simprbda 501 . 2 (((𝐾𝐴𝑋𝐵𝑌𝐵) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑋 𝑌)
84, 7syldan 593 1 (((𝐾𝐴𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016   class class class wbr 5065  cfv 6354  Basecbs 16482  lecple 16571  ltcplt 17550  ccvr 36397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-iota 6313  df-fun 6356  df-fv 6362  df-plt 17567  df-covers 36401
This theorem is referenced by:  cvrnbtwn4  36414  cvrcmp  36418  atcvrj2b  36567  atexchcvrN  36575  llncmp  36657  llncvrlpln  36693  lplncmp  36697  lplncvrlvol  36751  lvolcmp  36752
  Copyright terms: Public domain W3C validator