| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cvrle | Structured version Visualization version GIF version | ||
| Description: The covers relation implies the "less than or equal to" relation. (Contributed by NM, 12-Oct-2011.) |
| Ref | Expression |
|---|---|
| cvrle.b | ⊢ 𝐵 = (Base‘𝐾) |
| cvrle.l | ⊢ ≤ = (le‘𝐾) |
| cvrle.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
| Ref | Expression |
|---|---|
| cvrle | ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 ≤ 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvrle.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | eqid 2734 | . . 3 ⊢ (lt‘𝐾) = (lt‘𝐾) | |
| 3 | cvrle.c | . . 3 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
| 4 | 1, 2, 3 | cvrlt 39212 | . 2 ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → 𝑋(lt‘𝐾)𝑌) |
| 5 | cvrle.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 6 | 5, 2 | pltval 18351 | . . 3 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋(lt‘𝐾)𝑌 ↔ (𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌))) |
| 7 | 6 | simprbda 498 | . 2 ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑋 ≤ 𝑌) |
| 8 | 4, 7 | syldan 591 | 1 ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 ≤ 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 class class class wbr 5125 ‘cfv 6542 Basecbs 17230 lecple 17284 ltcplt 18329 ⋖ ccvr 39204 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-iota 6495 df-fun 6544 df-fv 6550 df-plt 18349 df-covers 39208 |
| This theorem is referenced by: cvrnbtwn4 39221 cvrcmp 39225 atcvrj2b 39375 atexchcvrN 39383 llncmp 39465 llncvrlpln 39501 lplncmp 39505 lplncvrlvol 39559 lvolcmp 39560 |
| Copyright terms: Public domain | W3C validator |