Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atexchcvrN Structured version   Visualization version   GIF version

Theorem atexchcvrN 38249
Description: Atom exchange property. Version of hlatexch2 38205 with covers relation. (Contributed by NM, 7-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
atexchcvr.j = (join‘𝐾)
atexchcvr.a 𝐴 = (Atoms‘𝐾)
atexchcvr.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
atexchcvrN ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) → (𝑃𝐶(𝑄 𝑅) → 𝑄𝐶(𝑃 𝑅)))

Proof of Theorem atexchcvrN
StepHypRef Expression
1 simpl1 1192 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝐾 ∈ HL)
2 simpl21 1252 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑃𝐴)
3 eqid 2733 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
4 atexchcvr.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
53, 4atbase 38097 . . . . . 6 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
62, 5syl 17 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑃 ∈ (Base‘𝐾))
71hllatd 38172 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝐾 ∈ Lat)
8 simpl22 1253 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑄𝐴)
93, 4atbase 38097 . . . . . . 7 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
108, 9syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑄 ∈ (Base‘𝐾))
11 simpl23 1254 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑅𝐴)
123, 4atbase 38097 . . . . . . 7 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
1311, 12syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑅 ∈ (Base‘𝐾))
14 atexchcvr.j . . . . . . 7 = (join‘𝐾)
153, 14latjcl 18388 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → (𝑄 𝑅) ∈ (Base‘𝐾))
167, 10, 13, 15syl3anc 1372 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑃𝐶(𝑄 𝑅)) → (𝑄 𝑅) ∈ (Base‘𝐾))
171, 6, 163jca 1129 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑃𝐶(𝑄 𝑅)) → (𝐾 ∈ HL ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾)))
18 eqid 2733 . . . . 5 (le‘𝐾) = (le‘𝐾)
19 atexchcvr.c . . . . 5 𝐶 = ( ⋖ ‘𝐾)
203, 18, 19cvrle 38086 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾)) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑃(le‘𝐾)(𝑄 𝑅))
2117, 20sylancom 589 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑃(le‘𝐾)(𝑄 𝑅))
2221ex 414 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) → (𝑃𝐶(𝑄 𝑅) → 𝑃(le‘𝐾)(𝑄 𝑅)))
2318, 14, 4hlatexch2 38205 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) → (𝑃(le‘𝐾)(𝑄 𝑅) → 𝑄(le‘𝐾)(𝑃 𝑅)))
24 simpl1 1192 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑄(le‘𝐾)(𝑃 𝑅)) → 𝐾 ∈ HL)
25 simpl22 1253 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑄(le‘𝐾)(𝑃 𝑅)) → 𝑄𝐴)
26 simpl21 1252 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑄(le‘𝐾)(𝑃 𝑅)) → 𝑃𝐴)
27 simpl23 1254 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑄(le‘𝐾)(𝑃 𝑅)) → 𝑅𝐴)
28 simpl3 1194 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑄(le‘𝐾)(𝑃 𝑅)) → 𝑃𝑅)
29 simpr 486 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑄(le‘𝐾)(𝑃 𝑅)) → 𝑄(le‘𝐾)(𝑃 𝑅))
3018, 14, 19, 4atcvrj2 38242 . . . 4 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑃𝐴𝑅𝐴) ∧ (𝑃𝑅𝑄(le‘𝐾)(𝑃 𝑅))) → 𝑄𝐶(𝑃 𝑅))
3124, 25, 26, 27, 28, 29, 30syl132anc 1389 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑄(le‘𝐾)(𝑃 𝑅)) → 𝑄𝐶(𝑃 𝑅))
3231ex 414 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) → (𝑄(le‘𝐾)(𝑃 𝑅) → 𝑄𝐶(𝑃 𝑅)))
3322, 23, 323syld 60 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) → (𝑃𝐶(𝑄 𝑅) → 𝑄𝐶(𝑃 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2941   class class class wbr 5147  cfv 6540  (class class class)co 7404  Basecbs 17140  lecple 17200  joincjn 18260  Latclat 18380  ccvr 38070  Atomscatm 38071  HLchlt 38158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-proset 18244  df-poset 18262  df-plt 18279  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-p0 18374  df-lat 18381  df-clat 18448  df-oposet 37984  df-ol 37986  df-oml 37987  df-covers 38074  df-ats 38075  df-atl 38106  df-cvlat 38130  df-hlat 38159
This theorem is referenced by:  atexchltN  38250
  Copyright terms: Public domain W3C validator