Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atexchcvrN Structured version   Visualization version   GIF version

Theorem atexchcvrN 37009
Description: Atom exchange property. Version of hlatexch2 36965 with covers relation. (Contributed by NM, 7-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
atexchcvr.j = (join‘𝐾)
atexchcvr.a 𝐴 = (Atoms‘𝐾)
atexchcvr.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
atexchcvrN ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) → (𝑃𝐶(𝑄 𝑅) → 𝑄𝐶(𝑃 𝑅)))

Proof of Theorem atexchcvrN
StepHypRef Expression
1 simpl1 1189 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝐾 ∈ HL)
2 simpl21 1249 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑃𝐴)
3 eqid 2759 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
4 atexchcvr.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
53, 4atbase 36858 . . . . . 6 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
62, 5syl 17 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑃 ∈ (Base‘𝐾))
71hllatd 36933 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝐾 ∈ Lat)
8 simpl22 1250 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑄𝐴)
93, 4atbase 36858 . . . . . . 7 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
108, 9syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑄 ∈ (Base‘𝐾))
11 simpl23 1251 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑅𝐴)
123, 4atbase 36858 . . . . . . 7 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
1311, 12syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑅 ∈ (Base‘𝐾))
14 atexchcvr.j . . . . . . 7 = (join‘𝐾)
153, 14latjcl 17720 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → (𝑄 𝑅) ∈ (Base‘𝐾))
167, 10, 13, 15syl3anc 1369 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑃𝐶(𝑄 𝑅)) → (𝑄 𝑅) ∈ (Base‘𝐾))
171, 6, 163jca 1126 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑃𝐶(𝑄 𝑅)) → (𝐾 ∈ HL ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾)))
18 eqid 2759 . . . . 5 (le‘𝐾) = (le‘𝐾)
19 atexchcvr.c . . . . 5 𝐶 = ( ⋖ ‘𝐾)
203, 18, 19cvrle 36847 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾)) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑃(le‘𝐾)(𝑄 𝑅))
2117, 20sylancom 592 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑃(le‘𝐾)(𝑄 𝑅))
2221ex 417 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) → (𝑃𝐶(𝑄 𝑅) → 𝑃(le‘𝐾)(𝑄 𝑅)))
2318, 14, 4hlatexch2 36965 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) → (𝑃(le‘𝐾)(𝑄 𝑅) → 𝑄(le‘𝐾)(𝑃 𝑅)))
24 simpl1 1189 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑄(le‘𝐾)(𝑃 𝑅)) → 𝐾 ∈ HL)
25 simpl22 1250 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑄(le‘𝐾)(𝑃 𝑅)) → 𝑄𝐴)
26 simpl21 1249 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑄(le‘𝐾)(𝑃 𝑅)) → 𝑃𝐴)
27 simpl23 1251 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑄(le‘𝐾)(𝑃 𝑅)) → 𝑅𝐴)
28 simpl3 1191 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑄(le‘𝐾)(𝑃 𝑅)) → 𝑃𝑅)
29 simpr 489 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑄(le‘𝐾)(𝑃 𝑅)) → 𝑄(le‘𝐾)(𝑃 𝑅))
3018, 14, 19, 4atcvrj2 37002 . . . 4 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑃𝐴𝑅𝐴) ∧ (𝑃𝑅𝑄(le‘𝐾)(𝑃 𝑅))) → 𝑄𝐶(𝑃 𝑅))
3124, 25, 26, 27, 28, 29, 30syl132anc 1386 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑄(le‘𝐾)(𝑃 𝑅)) → 𝑄𝐶(𝑃 𝑅))
3231ex 417 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) → (𝑄(le‘𝐾)(𝑃 𝑅) → 𝑄𝐶(𝑃 𝑅)))
3322, 23, 323syld 60 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) → (𝑃𝐶(𝑄 𝑅) → 𝑄𝐶(𝑃 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400  w3a 1085   = wceq 1539  wcel 2112  wne 2952   class class class wbr 5033  cfv 6336  (class class class)co 7151  Basecbs 16534  lecple 16623  joincjn 17613  Latclat 17714  ccvr 36831  Atomscatm 36832  HLchlt 36919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-op 4530  df-uni 4800  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5431  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7109  df-ov 7154  df-oprab 7155  df-proset 17597  df-poset 17615  df-plt 17627  df-lub 17643  df-glb 17644  df-join 17645  df-meet 17646  df-p0 17708  df-lat 17715  df-clat 17777  df-oposet 36745  df-ol 36747  df-oml 36748  df-covers 36835  df-ats 36836  df-atl 36867  df-cvlat 36891  df-hlat 36920
This theorem is referenced by:  atexchltN  37010
  Copyright terms: Public domain W3C validator