Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atexchcvrN Structured version   Visualization version   GIF version

Theorem atexchcvrN 37454
Description: Atom exchange property. Version of hlatexch2 37410 with covers relation. (Contributed by NM, 7-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
atexchcvr.j = (join‘𝐾)
atexchcvr.a 𝐴 = (Atoms‘𝐾)
atexchcvr.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
atexchcvrN ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) → (𝑃𝐶(𝑄 𝑅) → 𝑄𝐶(𝑃 𝑅)))

Proof of Theorem atexchcvrN
StepHypRef Expression
1 simpl1 1190 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝐾 ∈ HL)
2 simpl21 1250 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑃𝐴)
3 eqid 2738 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
4 atexchcvr.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
53, 4atbase 37303 . . . . . 6 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
62, 5syl 17 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑃 ∈ (Base‘𝐾))
71hllatd 37378 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝐾 ∈ Lat)
8 simpl22 1251 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑄𝐴)
93, 4atbase 37303 . . . . . . 7 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
108, 9syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑄 ∈ (Base‘𝐾))
11 simpl23 1252 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑅𝐴)
123, 4atbase 37303 . . . . . . 7 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
1311, 12syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑅 ∈ (Base‘𝐾))
14 atexchcvr.j . . . . . . 7 = (join‘𝐾)
153, 14latjcl 18157 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → (𝑄 𝑅) ∈ (Base‘𝐾))
167, 10, 13, 15syl3anc 1370 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑃𝐶(𝑄 𝑅)) → (𝑄 𝑅) ∈ (Base‘𝐾))
171, 6, 163jca 1127 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑃𝐶(𝑄 𝑅)) → (𝐾 ∈ HL ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾)))
18 eqid 2738 . . . . 5 (le‘𝐾) = (le‘𝐾)
19 atexchcvr.c . . . . 5 𝐶 = ( ⋖ ‘𝐾)
203, 18, 19cvrle 37292 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾)) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑃(le‘𝐾)(𝑄 𝑅))
2117, 20sylancom 588 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑃(le‘𝐾)(𝑄 𝑅))
2221ex 413 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) → (𝑃𝐶(𝑄 𝑅) → 𝑃(le‘𝐾)(𝑄 𝑅)))
2318, 14, 4hlatexch2 37410 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) → (𝑃(le‘𝐾)(𝑄 𝑅) → 𝑄(le‘𝐾)(𝑃 𝑅)))
24 simpl1 1190 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑄(le‘𝐾)(𝑃 𝑅)) → 𝐾 ∈ HL)
25 simpl22 1251 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑄(le‘𝐾)(𝑃 𝑅)) → 𝑄𝐴)
26 simpl21 1250 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑄(le‘𝐾)(𝑃 𝑅)) → 𝑃𝐴)
27 simpl23 1252 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑄(le‘𝐾)(𝑃 𝑅)) → 𝑅𝐴)
28 simpl3 1192 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑄(le‘𝐾)(𝑃 𝑅)) → 𝑃𝑅)
29 simpr 485 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑄(le‘𝐾)(𝑃 𝑅)) → 𝑄(le‘𝐾)(𝑃 𝑅))
3018, 14, 19, 4atcvrj2 37447 . . . 4 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑃𝐴𝑅𝐴) ∧ (𝑃𝑅𝑄(le‘𝐾)(𝑃 𝑅))) → 𝑄𝐶(𝑃 𝑅))
3124, 25, 26, 27, 28, 29, 30syl132anc 1387 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑄(le‘𝐾)(𝑃 𝑅)) → 𝑄𝐶(𝑃 𝑅))
3231ex 413 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) → (𝑄(le‘𝐾)(𝑃 𝑅) → 𝑄𝐶(𝑃 𝑅)))
3322, 23, 323syld 60 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) → (𝑃𝐶(𝑄 𝑅) → 𝑄𝐶(𝑃 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  cfv 6433  (class class class)co 7275  Basecbs 16912  lecple 16969  joincjn 18029  Latclat 18149  ccvr 37276  Atomscatm 37277  HLchlt 37364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-lat 18150  df-clat 18217  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365
This theorem is referenced by:  atexchltN  37455
  Copyright terms: Public domain W3C validator