Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atexchcvrN Structured version   Visualization version   GIF version

Theorem atexchcvrN 39549
Description: Atom exchange property. Version of hlatexch2 39505 with covers relation. (Contributed by NM, 7-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
atexchcvr.j = (join‘𝐾)
atexchcvr.a 𝐴 = (Atoms‘𝐾)
atexchcvr.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
atexchcvrN ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) → (𝑃𝐶(𝑄 𝑅) → 𝑄𝐶(𝑃 𝑅)))

Proof of Theorem atexchcvrN
StepHypRef Expression
1 simpl1 1192 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝐾 ∈ HL)
2 simpl21 1252 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑃𝐴)
3 eqid 2733 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
4 atexchcvr.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
53, 4atbase 39398 . . . . . 6 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
62, 5syl 17 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑃 ∈ (Base‘𝐾))
71hllatd 39473 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝐾 ∈ Lat)
8 simpl22 1253 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑄𝐴)
93, 4atbase 39398 . . . . . . 7 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
108, 9syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑄 ∈ (Base‘𝐾))
11 simpl23 1254 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑅𝐴)
123, 4atbase 39398 . . . . . . 7 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
1311, 12syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑅 ∈ (Base‘𝐾))
14 atexchcvr.j . . . . . . 7 = (join‘𝐾)
153, 14latjcl 18355 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → (𝑄 𝑅) ∈ (Base‘𝐾))
167, 10, 13, 15syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑃𝐶(𝑄 𝑅)) → (𝑄 𝑅) ∈ (Base‘𝐾))
171, 6, 163jca 1128 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑃𝐶(𝑄 𝑅)) → (𝐾 ∈ HL ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾)))
18 eqid 2733 . . . . 5 (le‘𝐾) = (le‘𝐾)
19 atexchcvr.c . . . . 5 𝐶 = ( ⋖ ‘𝐾)
203, 18, 19cvrle 39387 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾)) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑃(le‘𝐾)(𝑄 𝑅))
2117, 20sylancom 588 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑃(le‘𝐾)(𝑄 𝑅))
2221ex 412 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) → (𝑃𝐶(𝑄 𝑅) → 𝑃(le‘𝐾)(𝑄 𝑅)))
2318, 14, 4hlatexch2 39505 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) → (𝑃(le‘𝐾)(𝑄 𝑅) → 𝑄(le‘𝐾)(𝑃 𝑅)))
24 simpl1 1192 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑄(le‘𝐾)(𝑃 𝑅)) → 𝐾 ∈ HL)
25 simpl22 1253 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑄(le‘𝐾)(𝑃 𝑅)) → 𝑄𝐴)
26 simpl21 1252 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑄(le‘𝐾)(𝑃 𝑅)) → 𝑃𝐴)
27 simpl23 1254 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑄(le‘𝐾)(𝑃 𝑅)) → 𝑅𝐴)
28 simpl3 1194 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑄(le‘𝐾)(𝑃 𝑅)) → 𝑃𝑅)
29 simpr 484 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑄(le‘𝐾)(𝑃 𝑅)) → 𝑄(le‘𝐾)(𝑃 𝑅))
3018, 14, 19, 4atcvrj2 39542 . . . 4 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑃𝐴𝑅𝐴) ∧ (𝑃𝑅𝑄(le‘𝐾)(𝑃 𝑅))) → 𝑄𝐶(𝑃 𝑅))
3124, 25, 26, 27, 28, 29, 30syl132anc 1390 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) ∧ 𝑄(le‘𝐾)(𝑃 𝑅)) → 𝑄𝐶(𝑃 𝑅))
3231ex 412 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) → (𝑄(le‘𝐾)(𝑃 𝑅) → 𝑄𝐶(𝑃 𝑅)))
3322, 23, 323syld 60 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) → (𝑃𝐶(𝑄 𝑅) → 𝑄𝐶(𝑃 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2930   class class class wbr 5095  cfv 6489  (class class class)co 7355  Basecbs 17130  lecple 17178  joincjn 18227  Latclat 18347  ccvr 39371  Atomscatm 39372  HLchlt 39459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-proset 18210  df-poset 18229  df-plt 18244  df-lub 18260  df-glb 18261  df-join 18262  df-meet 18263  df-p0 18339  df-lat 18348  df-clat 18415  df-oposet 39285  df-ol 39287  df-oml 39288  df-covers 39375  df-ats 39376  df-atl 39407  df-cvlat 39431  df-hlat 39460
This theorem is referenced by:  atexchltN  39550
  Copyright terms: Public domain W3C validator