Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atcvrj2b Structured version   Visualization version   GIF version

Theorem atcvrj2b 39451
Description: Condition for an atom to be covered by the join of two others. (Contributed by NM, 7-Feb-2012.)
Hypotheses
Ref Expression
atcvrj1x.l = (le‘𝐾)
atcvrj1x.j = (join‘𝐾)
atcvrj1x.c 𝐶 = ( ⋖ ‘𝐾)
atcvrj1x.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atcvrj2b ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑄𝑅𝑃 (𝑄 𝑅)) ↔ 𝑃𝐶(𝑄 𝑅)))

Proof of Theorem atcvrj2b
StepHypRef Expression
1 simpl3l 1229 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑃 (𝑄 𝑅))) ∧ 𝑃 = 𝑅) → 𝑄𝑅)
21necomd 2987 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑃 (𝑄 𝑅))) ∧ 𝑃 = 𝑅) → 𝑅𝑄)
3 simpl1 1192 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑃 (𝑄 𝑅))) ∧ 𝑃 = 𝑅) → 𝐾 ∈ HL)
4 simpl23 1254 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑃 (𝑄 𝑅))) ∧ 𝑃 = 𝑅) → 𝑅𝐴)
5 simpl22 1253 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑃 (𝑄 𝑅))) ∧ 𝑃 = 𝑅) → 𝑄𝐴)
6 atcvrj1x.j . . . . . . . 8 = (join‘𝐾)
7 atcvrj1x.c . . . . . . . 8 𝐶 = ( ⋖ ‘𝐾)
8 atcvrj1x.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
96, 7, 8atcvr2 39437 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑄𝐴) → (𝑅𝑄𝑅𝐶(𝑄 𝑅)))
103, 4, 5, 9syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑃 (𝑄 𝑅))) ∧ 𝑃 = 𝑅) → (𝑅𝑄𝑅𝐶(𝑄 𝑅)))
112, 10mpbid 232 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑃 (𝑄 𝑅))) ∧ 𝑃 = 𝑅) → 𝑅𝐶(𝑄 𝑅))
12 breq1 5122 . . . . . 6 (𝑃 = 𝑅 → (𝑃𝐶(𝑄 𝑅) ↔ 𝑅𝐶(𝑄 𝑅)))
1312adantl 481 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑃 (𝑄 𝑅))) ∧ 𝑃 = 𝑅) → (𝑃𝐶(𝑄 𝑅) ↔ 𝑅𝐶(𝑄 𝑅)))
1411, 13mpbird 257 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑃 (𝑄 𝑅))) ∧ 𝑃 = 𝑅) → 𝑃𝐶(𝑄 𝑅))
15 simpl1 1192 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑃 (𝑄 𝑅))) ∧ 𝑃𝑅) → 𝐾 ∈ HL)
16 simpl2 1193 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑃 (𝑄 𝑅))) ∧ 𝑃𝑅) → (𝑃𝐴𝑄𝐴𝑅𝐴))
17 simpr 484 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑃 (𝑄 𝑅))) ∧ 𝑃𝑅) → 𝑃𝑅)
18 simpl3r 1230 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑃 (𝑄 𝑅))) ∧ 𝑃𝑅) → 𝑃 (𝑄 𝑅))
19 atcvrj1x.l . . . . . 6 = (le‘𝐾)
2019, 6, 7, 8atcvrj1 39450 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑅𝑃 (𝑄 𝑅))) → 𝑃𝐶(𝑄 𝑅))
2115, 16, 17, 18, 20syl112anc 1376 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑃 (𝑄 𝑅))) ∧ 𝑃𝑅) → 𝑃𝐶(𝑄 𝑅))
2214, 21pm2.61dane 3019 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑃 (𝑄 𝑅))) → 𝑃𝐶(𝑄 𝑅))
23223expia 1121 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑄𝑅𝑃 (𝑄 𝑅)) → 𝑃𝐶(𝑄 𝑅)))
24 hlatl 39378 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
2524ad2antrr 726 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝐾 ∈ AtLat)
26 simplr1 1216 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑃𝐴)
27 eqid 2735 . . . . . . 7 (0.‘𝐾) = (0.‘𝐾)
2827, 8atn0 39326 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → 𝑃 ≠ (0.‘𝐾))
2925, 26, 28syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑃 ≠ (0.‘𝐾))
30 simpll 766 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝐾 ∈ HL)
31 eqid 2735 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
3231, 8atbase 39307 . . . . . . . 8 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
3326, 32syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑃 ∈ (Base‘𝐾))
34 simplr2 1217 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑄𝐴)
35 simplr3 1218 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑅𝐴)
36 simpr 484 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑃𝐶(𝑄 𝑅))
3731, 6, 27, 7, 8atcvrj0 39447 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄𝐴𝑅𝐴) ∧ 𝑃𝐶(𝑄 𝑅)) → (𝑃 = (0.‘𝐾) ↔ 𝑄 = 𝑅))
3830, 33, 34, 35, 36, 37syl131anc 1385 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑃𝐶(𝑄 𝑅)) → (𝑃 = (0.‘𝐾) ↔ 𝑄 = 𝑅))
3938necon3bid 2976 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑃𝐶(𝑄 𝑅)) → (𝑃 ≠ (0.‘𝐾) ↔ 𝑄𝑅))
4029, 39mpbid 232 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑄𝑅)
41 hllat 39381 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ Lat)
4241ad2antrr 726 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝐾 ∈ Lat)
4331, 8atbase 39307 . . . . . . . 8 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
4434, 43syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑄 ∈ (Base‘𝐾))
4531, 8atbase 39307 . . . . . . . 8 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
4635, 45syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑅 ∈ (Base‘𝐾))
4731, 6latjcl 18449 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → (𝑄 𝑅) ∈ (Base‘𝐾))
4842, 44, 46, 47syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑃𝐶(𝑄 𝑅)) → (𝑄 𝑅) ∈ (Base‘𝐾))
4930, 33, 483jca 1128 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑃𝐶(𝑄 𝑅)) → (𝐾 ∈ HL ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾)))
5031, 19, 7cvrle 39296 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾)) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑃 (𝑄 𝑅))
5149, 50sylancom 588 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑃 (𝑄 𝑅))
5240, 51jca 511 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑃𝐶(𝑄 𝑅)) → (𝑄𝑅𝑃 (𝑄 𝑅)))
5352ex 412 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑃𝐶(𝑄 𝑅) → (𝑄𝑅𝑃 (𝑄 𝑅))))
5423, 53impbid 212 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑄𝑅𝑃 (𝑄 𝑅)) ↔ 𝑃𝐶(𝑄 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932   class class class wbr 5119  cfv 6531  (class class class)co 7405  Basecbs 17228  lecple 17278  joincjn 18323  0.cp0 18433  Latclat 18441  ccvr 39280  Atomscatm 39281  AtLatcal 39282  HLchlt 39368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-proset 18306  df-poset 18325  df-plt 18340  df-lub 18356  df-glb 18357  df-join 18358  df-meet 18359  df-p0 18435  df-lat 18442  df-clat 18509  df-oposet 39194  df-ol 39196  df-oml 39197  df-covers 39284  df-ats 39285  df-atl 39316  df-cvlat 39340  df-hlat 39369
This theorem is referenced by:  atcvrj2  39452
  Copyright terms: Public domain W3C validator