Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atcvrj2b Structured version   Visualization version   GIF version

Theorem atcvrj2b 37941
Description: Condition for an atom to be covered by the join of two others. (Contributed by NM, 7-Feb-2012.)
Hypotheses
Ref Expression
atcvrj1x.l ≀ = (leβ€˜πΎ)
atcvrj1x.j ∨ = (joinβ€˜πΎ)
atcvrj1x.c 𝐢 = ( β‹– β€˜πΎ)
atcvrj1x.a 𝐴 = (Atomsβ€˜πΎ)
Assertion
Ref Expression
atcvrj2b ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) β†’ ((𝑄 β‰  𝑅 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅)) ↔ 𝑃𝐢(𝑄 ∨ 𝑅)))

Proof of Theorem atcvrj2b
StepHypRef Expression
1 simpl3l 1229 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅))) ∧ 𝑃 = 𝑅) β†’ 𝑄 β‰  𝑅)
21necomd 2996 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅))) ∧ 𝑃 = 𝑅) β†’ 𝑅 β‰  𝑄)
3 simpl1 1192 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅))) ∧ 𝑃 = 𝑅) β†’ 𝐾 ∈ HL)
4 simpl23 1254 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅))) ∧ 𝑃 = 𝑅) β†’ 𝑅 ∈ 𝐴)
5 simpl22 1253 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅))) ∧ 𝑃 = 𝑅) β†’ 𝑄 ∈ 𝐴)
6 atcvrj1x.j . . . . . . . 8 ∨ = (joinβ€˜πΎ)
7 atcvrj1x.c . . . . . . . 8 𝐢 = ( β‹– β€˜πΎ)
8 atcvrj1x.a . . . . . . . 8 𝐴 = (Atomsβ€˜πΎ)
96, 7, 8atcvr2 37927 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ (𝑅 β‰  𝑄 ↔ 𝑅𝐢(𝑄 ∨ 𝑅)))
103, 4, 5, 9syl3anc 1372 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅))) ∧ 𝑃 = 𝑅) β†’ (𝑅 β‰  𝑄 ↔ 𝑅𝐢(𝑄 ∨ 𝑅)))
112, 10mpbid 231 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅))) ∧ 𝑃 = 𝑅) β†’ 𝑅𝐢(𝑄 ∨ 𝑅))
12 breq1 5109 . . . . . 6 (𝑃 = 𝑅 β†’ (𝑃𝐢(𝑄 ∨ 𝑅) ↔ 𝑅𝐢(𝑄 ∨ 𝑅)))
1312adantl 483 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅))) ∧ 𝑃 = 𝑅) β†’ (𝑃𝐢(𝑄 ∨ 𝑅) ↔ 𝑅𝐢(𝑄 ∨ 𝑅)))
1411, 13mpbird 257 . . . 4 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅))) ∧ 𝑃 = 𝑅) β†’ 𝑃𝐢(𝑄 ∨ 𝑅))
15 simpl1 1192 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅))) ∧ 𝑃 β‰  𝑅) β†’ 𝐾 ∈ HL)
16 simpl2 1193 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅))) ∧ 𝑃 β‰  𝑅) β†’ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴))
17 simpr 486 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅))) ∧ 𝑃 β‰  𝑅) β†’ 𝑃 β‰  𝑅)
18 simpl3r 1230 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅))) ∧ 𝑃 β‰  𝑅) β†’ 𝑃 ≀ (𝑄 ∨ 𝑅))
19 atcvrj1x.l . . . . . 6 ≀ = (leβ€˜πΎ)
2019, 6, 7, 8atcvrj1 37940 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑅 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅))) β†’ 𝑃𝐢(𝑄 ∨ 𝑅))
2115, 16, 17, 18, 20syl112anc 1375 . . . 4 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅))) ∧ 𝑃 β‰  𝑅) β†’ 𝑃𝐢(𝑄 ∨ 𝑅))
2214, 21pm2.61dane 3029 . . 3 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅))) β†’ 𝑃𝐢(𝑄 ∨ 𝑅))
23223expia 1122 . 2 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) β†’ ((𝑄 β‰  𝑅 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅)) β†’ 𝑃𝐢(𝑄 ∨ 𝑅)))
24 hlatl 37868 . . . . . . 7 (𝐾 ∈ HL β†’ 𝐾 ∈ AtLat)
2524ad2antrr 725 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ 𝑃𝐢(𝑄 ∨ 𝑅)) β†’ 𝐾 ∈ AtLat)
26 simplr1 1216 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ 𝑃𝐢(𝑄 ∨ 𝑅)) β†’ 𝑃 ∈ 𝐴)
27 eqid 2733 . . . . . . 7 (0.β€˜πΎ) = (0.β€˜πΎ)
2827, 8atn0 37816 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) β†’ 𝑃 β‰  (0.β€˜πΎ))
2925, 26, 28syl2anc 585 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ 𝑃𝐢(𝑄 ∨ 𝑅)) β†’ 𝑃 β‰  (0.β€˜πΎ))
30 simpll 766 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ 𝑃𝐢(𝑄 ∨ 𝑅)) β†’ 𝐾 ∈ HL)
31 eqid 2733 . . . . . . . . 9 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
3231, 8atbase 37797 . . . . . . . 8 (𝑃 ∈ 𝐴 β†’ 𝑃 ∈ (Baseβ€˜πΎ))
3326, 32syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ 𝑃𝐢(𝑄 ∨ 𝑅)) β†’ 𝑃 ∈ (Baseβ€˜πΎ))
34 simplr2 1217 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ 𝑃𝐢(𝑄 ∨ 𝑅)) β†’ 𝑄 ∈ 𝐴)
35 simplr3 1218 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ 𝑃𝐢(𝑄 ∨ 𝑅)) β†’ 𝑅 ∈ 𝐴)
36 simpr 486 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ 𝑃𝐢(𝑄 ∨ 𝑅)) β†’ 𝑃𝐢(𝑄 ∨ 𝑅))
3731, 6, 27, 7, 8atcvrj0 37937 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃 ∈ (Baseβ€˜πΎ) ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃𝐢(𝑄 ∨ 𝑅)) β†’ (𝑃 = (0.β€˜πΎ) ↔ 𝑄 = 𝑅))
3830, 33, 34, 35, 36, 37syl131anc 1384 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ 𝑃𝐢(𝑄 ∨ 𝑅)) β†’ (𝑃 = (0.β€˜πΎ) ↔ 𝑄 = 𝑅))
3938necon3bid 2985 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ 𝑃𝐢(𝑄 ∨ 𝑅)) β†’ (𝑃 β‰  (0.β€˜πΎ) ↔ 𝑄 β‰  𝑅))
4029, 39mpbid 231 . . . 4 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ 𝑃𝐢(𝑄 ∨ 𝑅)) β†’ 𝑄 β‰  𝑅)
41 hllat 37871 . . . . . . . 8 (𝐾 ∈ HL β†’ 𝐾 ∈ Lat)
4241ad2antrr 725 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ 𝑃𝐢(𝑄 ∨ 𝑅)) β†’ 𝐾 ∈ Lat)
4331, 8atbase 37797 . . . . . . . 8 (𝑄 ∈ 𝐴 β†’ 𝑄 ∈ (Baseβ€˜πΎ))
4434, 43syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ 𝑃𝐢(𝑄 ∨ 𝑅)) β†’ 𝑄 ∈ (Baseβ€˜πΎ))
4531, 8atbase 37797 . . . . . . . 8 (𝑅 ∈ 𝐴 β†’ 𝑅 ∈ (Baseβ€˜πΎ))
4635, 45syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ 𝑃𝐢(𝑄 ∨ 𝑅)) β†’ 𝑅 ∈ (Baseβ€˜πΎ))
4731, 6latjcl 18333 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Baseβ€˜πΎ) ∧ 𝑅 ∈ (Baseβ€˜πΎ)) β†’ (𝑄 ∨ 𝑅) ∈ (Baseβ€˜πΎ))
4842, 44, 46, 47syl3anc 1372 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ 𝑃𝐢(𝑄 ∨ 𝑅)) β†’ (𝑄 ∨ 𝑅) ∈ (Baseβ€˜πΎ))
4930, 33, 483jca 1129 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ 𝑃𝐢(𝑄 ∨ 𝑅)) β†’ (𝐾 ∈ HL ∧ 𝑃 ∈ (Baseβ€˜πΎ) ∧ (𝑄 ∨ 𝑅) ∈ (Baseβ€˜πΎ)))
5031, 19, 7cvrle 37786 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 ∈ (Baseβ€˜πΎ) ∧ (𝑄 ∨ 𝑅) ∈ (Baseβ€˜πΎ)) ∧ 𝑃𝐢(𝑄 ∨ 𝑅)) β†’ 𝑃 ≀ (𝑄 ∨ 𝑅))
5149, 50sylancom 589 . . . 4 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ 𝑃𝐢(𝑄 ∨ 𝑅)) β†’ 𝑃 ≀ (𝑄 ∨ 𝑅))
5240, 51jca 513 . . 3 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ 𝑃𝐢(𝑄 ∨ 𝑅)) β†’ (𝑄 β‰  𝑅 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅)))
5352ex 414 . 2 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) β†’ (𝑃𝐢(𝑄 ∨ 𝑅) β†’ (𝑄 β‰  𝑅 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅))))
5423, 53impbid 211 1 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) β†’ ((𝑄 β‰  𝑅 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅)) ↔ 𝑃𝐢(𝑄 ∨ 𝑅)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   β‰  wne 2940   class class class wbr 5106  β€˜cfv 6497  (class class class)co 7358  Basecbs 17088  lecple 17145  joincjn 18205  0.cp0 18317  Latclat 18325   β‹– ccvr 37770  Atomscatm 37771  AtLatcal 37772  HLchlt 37858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-proset 18189  df-poset 18207  df-plt 18224  df-lub 18240  df-glb 18241  df-join 18242  df-meet 18243  df-p0 18319  df-lat 18326  df-clat 18393  df-oposet 37684  df-ol 37686  df-oml 37687  df-covers 37774  df-ats 37775  df-atl 37806  df-cvlat 37830  df-hlat 37859
This theorem is referenced by:  atcvrj2  37942
  Copyright terms: Public domain W3C validator