Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atcvrj2b Structured version   Visualization version   GIF version

Theorem atcvrj2b 38291
Description: Condition for an atom to be covered by the join of two others. (Contributed by NM, 7-Feb-2012.)
Hypotheses
Ref Expression
atcvrj1x.l ≀ = (leβ€˜πΎ)
atcvrj1x.j ∨ = (joinβ€˜πΎ)
atcvrj1x.c 𝐢 = ( β‹– β€˜πΎ)
atcvrj1x.a 𝐴 = (Atomsβ€˜πΎ)
Assertion
Ref Expression
atcvrj2b ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) β†’ ((𝑄 β‰  𝑅 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅)) ↔ 𝑃𝐢(𝑄 ∨ 𝑅)))

Proof of Theorem atcvrj2b
StepHypRef Expression
1 simpl3l 1228 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅))) ∧ 𝑃 = 𝑅) β†’ 𝑄 β‰  𝑅)
21necomd 2996 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅))) ∧ 𝑃 = 𝑅) β†’ 𝑅 β‰  𝑄)
3 simpl1 1191 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅))) ∧ 𝑃 = 𝑅) β†’ 𝐾 ∈ HL)
4 simpl23 1253 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅))) ∧ 𝑃 = 𝑅) β†’ 𝑅 ∈ 𝐴)
5 simpl22 1252 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅))) ∧ 𝑃 = 𝑅) β†’ 𝑄 ∈ 𝐴)
6 atcvrj1x.j . . . . . . . 8 ∨ = (joinβ€˜πΎ)
7 atcvrj1x.c . . . . . . . 8 𝐢 = ( β‹– β€˜πΎ)
8 atcvrj1x.a . . . . . . . 8 𝐴 = (Atomsβ€˜πΎ)
96, 7, 8atcvr2 38277 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ (𝑅 β‰  𝑄 ↔ 𝑅𝐢(𝑄 ∨ 𝑅)))
103, 4, 5, 9syl3anc 1371 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅))) ∧ 𝑃 = 𝑅) β†’ (𝑅 β‰  𝑄 ↔ 𝑅𝐢(𝑄 ∨ 𝑅)))
112, 10mpbid 231 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅))) ∧ 𝑃 = 𝑅) β†’ 𝑅𝐢(𝑄 ∨ 𝑅))
12 breq1 5150 . . . . . 6 (𝑃 = 𝑅 β†’ (𝑃𝐢(𝑄 ∨ 𝑅) ↔ 𝑅𝐢(𝑄 ∨ 𝑅)))
1312adantl 482 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅))) ∧ 𝑃 = 𝑅) β†’ (𝑃𝐢(𝑄 ∨ 𝑅) ↔ 𝑅𝐢(𝑄 ∨ 𝑅)))
1411, 13mpbird 256 . . . 4 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅))) ∧ 𝑃 = 𝑅) β†’ 𝑃𝐢(𝑄 ∨ 𝑅))
15 simpl1 1191 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅))) ∧ 𝑃 β‰  𝑅) β†’ 𝐾 ∈ HL)
16 simpl2 1192 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅))) ∧ 𝑃 β‰  𝑅) β†’ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴))
17 simpr 485 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅))) ∧ 𝑃 β‰  𝑅) β†’ 𝑃 β‰  𝑅)
18 simpl3r 1229 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅))) ∧ 𝑃 β‰  𝑅) β†’ 𝑃 ≀ (𝑄 ∨ 𝑅))
19 atcvrj1x.l . . . . . 6 ≀ = (leβ€˜πΎ)
2019, 6, 7, 8atcvrj1 38290 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑅 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅))) β†’ 𝑃𝐢(𝑄 ∨ 𝑅))
2115, 16, 17, 18, 20syl112anc 1374 . . . 4 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅))) ∧ 𝑃 β‰  𝑅) β†’ 𝑃𝐢(𝑄 ∨ 𝑅))
2214, 21pm2.61dane 3029 . . 3 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅))) β†’ 𝑃𝐢(𝑄 ∨ 𝑅))
23223expia 1121 . 2 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) β†’ ((𝑄 β‰  𝑅 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅)) β†’ 𝑃𝐢(𝑄 ∨ 𝑅)))
24 hlatl 38218 . . . . . . 7 (𝐾 ∈ HL β†’ 𝐾 ∈ AtLat)
2524ad2antrr 724 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ 𝑃𝐢(𝑄 ∨ 𝑅)) β†’ 𝐾 ∈ AtLat)
26 simplr1 1215 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ 𝑃𝐢(𝑄 ∨ 𝑅)) β†’ 𝑃 ∈ 𝐴)
27 eqid 2732 . . . . . . 7 (0.β€˜πΎ) = (0.β€˜πΎ)
2827, 8atn0 38166 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) β†’ 𝑃 β‰  (0.β€˜πΎ))
2925, 26, 28syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ 𝑃𝐢(𝑄 ∨ 𝑅)) β†’ 𝑃 β‰  (0.β€˜πΎ))
30 simpll 765 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ 𝑃𝐢(𝑄 ∨ 𝑅)) β†’ 𝐾 ∈ HL)
31 eqid 2732 . . . . . . . . 9 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
3231, 8atbase 38147 . . . . . . . 8 (𝑃 ∈ 𝐴 β†’ 𝑃 ∈ (Baseβ€˜πΎ))
3326, 32syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ 𝑃𝐢(𝑄 ∨ 𝑅)) β†’ 𝑃 ∈ (Baseβ€˜πΎ))
34 simplr2 1216 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ 𝑃𝐢(𝑄 ∨ 𝑅)) β†’ 𝑄 ∈ 𝐴)
35 simplr3 1217 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ 𝑃𝐢(𝑄 ∨ 𝑅)) β†’ 𝑅 ∈ 𝐴)
36 simpr 485 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ 𝑃𝐢(𝑄 ∨ 𝑅)) β†’ 𝑃𝐢(𝑄 ∨ 𝑅))
3731, 6, 27, 7, 8atcvrj0 38287 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃 ∈ (Baseβ€˜πΎ) ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃𝐢(𝑄 ∨ 𝑅)) β†’ (𝑃 = (0.β€˜πΎ) ↔ 𝑄 = 𝑅))
3830, 33, 34, 35, 36, 37syl131anc 1383 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ 𝑃𝐢(𝑄 ∨ 𝑅)) β†’ (𝑃 = (0.β€˜πΎ) ↔ 𝑄 = 𝑅))
3938necon3bid 2985 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ 𝑃𝐢(𝑄 ∨ 𝑅)) β†’ (𝑃 β‰  (0.β€˜πΎ) ↔ 𝑄 β‰  𝑅))
4029, 39mpbid 231 . . . 4 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ 𝑃𝐢(𝑄 ∨ 𝑅)) β†’ 𝑄 β‰  𝑅)
41 hllat 38221 . . . . . . . 8 (𝐾 ∈ HL β†’ 𝐾 ∈ Lat)
4241ad2antrr 724 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ 𝑃𝐢(𝑄 ∨ 𝑅)) β†’ 𝐾 ∈ Lat)
4331, 8atbase 38147 . . . . . . . 8 (𝑄 ∈ 𝐴 β†’ 𝑄 ∈ (Baseβ€˜πΎ))
4434, 43syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ 𝑃𝐢(𝑄 ∨ 𝑅)) β†’ 𝑄 ∈ (Baseβ€˜πΎ))
4531, 8atbase 38147 . . . . . . . 8 (𝑅 ∈ 𝐴 β†’ 𝑅 ∈ (Baseβ€˜πΎ))
4635, 45syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ 𝑃𝐢(𝑄 ∨ 𝑅)) β†’ 𝑅 ∈ (Baseβ€˜πΎ))
4731, 6latjcl 18388 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Baseβ€˜πΎ) ∧ 𝑅 ∈ (Baseβ€˜πΎ)) β†’ (𝑄 ∨ 𝑅) ∈ (Baseβ€˜πΎ))
4842, 44, 46, 47syl3anc 1371 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ 𝑃𝐢(𝑄 ∨ 𝑅)) β†’ (𝑄 ∨ 𝑅) ∈ (Baseβ€˜πΎ))
4930, 33, 483jca 1128 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ 𝑃𝐢(𝑄 ∨ 𝑅)) β†’ (𝐾 ∈ HL ∧ 𝑃 ∈ (Baseβ€˜πΎ) ∧ (𝑄 ∨ 𝑅) ∈ (Baseβ€˜πΎ)))
5031, 19, 7cvrle 38136 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 ∈ (Baseβ€˜πΎ) ∧ (𝑄 ∨ 𝑅) ∈ (Baseβ€˜πΎ)) ∧ 𝑃𝐢(𝑄 ∨ 𝑅)) β†’ 𝑃 ≀ (𝑄 ∨ 𝑅))
5149, 50sylancom 588 . . . 4 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ 𝑃𝐢(𝑄 ∨ 𝑅)) β†’ 𝑃 ≀ (𝑄 ∨ 𝑅))
5240, 51jca 512 . . 3 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ 𝑃𝐢(𝑄 ∨ 𝑅)) β†’ (𝑄 β‰  𝑅 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅)))
5352ex 413 . 2 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) β†’ (𝑃𝐢(𝑄 ∨ 𝑅) β†’ (𝑄 β‰  𝑅 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅))))
5423, 53impbid 211 1 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) β†’ ((𝑄 β‰  𝑅 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅)) ↔ 𝑃𝐢(𝑄 ∨ 𝑅)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940   class class class wbr 5147  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  lecple 17200  joincjn 18260  0.cp0 18372  Latclat 18380   β‹– ccvr 38120  Atomscatm 38121  AtLatcal 38122  HLchlt 38208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-proset 18244  df-poset 18262  df-plt 18279  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-p0 18374  df-lat 18381  df-clat 18448  df-oposet 38034  df-ol 38036  df-oml 38037  df-covers 38124  df-ats 38125  df-atl 38156  df-cvlat 38180  df-hlat 38209
This theorem is referenced by:  atcvrj2  38292
  Copyright terms: Public domain W3C validator