Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atcvrj2b Structured version   Visualization version   GIF version

Theorem atcvrj2b 37446
Description: Condition for an atom to be covered by the join of two others. (Contributed by NM, 7-Feb-2012.)
Hypotheses
Ref Expression
atcvrj1x.l = (le‘𝐾)
atcvrj1x.j = (join‘𝐾)
atcvrj1x.c 𝐶 = ( ⋖ ‘𝐾)
atcvrj1x.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atcvrj2b ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑄𝑅𝑃 (𝑄 𝑅)) ↔ 𝑃𝐶(𝑄 𝑅)))

Proof of Theorem atcvrj2b
StepHypRef Expression
1 simpl3l 1227 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑃 (𝑄 𝑅))) ∧ 𝑃 = 𝑅) → 𝑄𝑅)
21necomd 2999 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑃 (𝑄 𝑅))) ∧ 𝑃 = 𝑅) → 𝑅𝑄)
3 simpl1 1190 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑃 (𝑄 𝑅))) ∧ 𝑃 = 𝑅) → 𝐾 ∈ HL)
4 simpl23 1252 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑃 (𝑄 𝑅))) ∧ 𝑃 = 𝑅) → 𝑅𝐴)
5 simpl22 1251 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑃 (𝑄 𝑅))) ∧ 𝑃 = 𝑅) → 𝑄𝐴)
6 atcvrj1x.j . . . . . . . 8 = (join‘𝐾)
7 atcvrj1x.c . . . . . . . 8 𝐶 = ( ⋖ ‘𝐾)
8 atcvrj1x.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
96, 7, 8atcvr2 37432 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑄𝐴) → (𝑅𝑄𝑅𝐶(𝑄 𝑅)))
103, 4, 5, 9syl3anc 1370 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑃 (𝑄 𝑅))) ∧ 𝑃 = 𝑅) → (𝑅𝑄𝑅𝐶(𝑄 𝑅)))
112, 10mpbid 231 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑃 (𝑄 𝑅))) ∧ 𝑃 = 𝑅) → 𝑅𝐶(𝑄 𝑅))
12 breq1 5077 . . . . . 6 (𝑃 = 𝑅 → (𝑃𝐶(𝑄 𝑅) ↔ 𝑅𝐶(𝑄 𝑅)))
1312adantl 482 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑃 (𝑄 𝑅))) ∧ 𝑃 = 𝑅) → (𝑃𝐶(𝑄 𝑅) ↔ 𝑅𝐶(𝑄 𝑅)))
1411, 13mpbird 256 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑃 (𝑄 𝑅))) ∧ 𝑃 = 𝑅) → 𝑃𝐶(𝑄 𝑅))
15 simpl1 1190 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑃 (𝑄 𝑅))) ∧ 𝑃𝑅) → 𝐾 ∈ HL)
16 simpl2 1191 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑃 (𝑄 𝑅))) ∧ 𝑃𝑅) → (𝑃𝐴𝑄𝐴𝑅𝐴))
17 simpr 485 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑃 (𝑄 𝑅))) ∧ 𝑃𝑅) → 𝑃𝑅)
18 simpl3r 1228 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑃 (𝑄 𝑅))) ∧ 𝑃𝑅) → 𝑃 (𝑄 𝑅))
19 atcvrj1x.l . . . . . 6 = (le‘𝐾)
2019, 6, 7, 8atcvrj1 37445 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑅𝑃 (𝑄 𝑅))) → 𝑃𝐶(𝑄 𝑅))
2115, 16, 17, 18, 20syl112anc 1373 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑃 (𝑄 𝑅))) ∧ 𝑃𝑅) → 𝑃𝐶(𝑄 𝑅))
2214, 21pm2.61dane 3032 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑃 (𝑄 𝑅))) → 𝑃𝐶(𝑄 𝑅))
23223expia 1120 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑄𝑅𝑃 (𝑄 𝑅)) → 𝑃𝐶(𝑄 𝑅)))
24 hlatl 37374 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
2524ad2antrr 723 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝐾 ∈ AtLat)
26 simplr1 1214 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑃𝐴)
27 eqid 2738 . . . . . . 7 (0.‘𝐾) = (0.‘𝐾)
2827, 8atn0 37322 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → 𝑃 ≠ (0.‘𝐾))
2925, 26, 28syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑃 ≠ (0.‘𝐾))
30 simpll 764 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝐾 ∈ HL)
31 eqid 2738 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
3231, 8atbase 37303 . . . . . . . 8 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
3326, 32syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑃 ∈ (Base‘𝐾))
34 simplr2 1215 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑄𝐴)
35 simplr3 1216 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑅𝐴)
36 simpr 485 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑃𝐶(𝑄 𝑅))
3731, 6, 27, 7, 8atcvrj0 37442 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄𝐴𝑅𝐴) ∧ 𝑃𝐶(𝑄 𝑅)) → (𝑃 = (0.‘𝐾) ↔ 𝑄 = 𝑅))
3830, 33, 34, 35, 36, 37syl131anc 1382 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑃𝐶(𝑄 𝑅)) → (𝑃 = (0.‘𝐾) ↔ 𝑄 = 𝑅))
3938necon3bid 2988 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑃𝐶(𝑄 𝑅)) → (𝑃 ≠ (0.‘𝐾) ↔ 𝑄𝑅))
4029, 39mpbid 231 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑄𝑅)
41 hllat 37377 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ Lat)
4241ad2antrr 723 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝐾 ∈ Lat)
4331, 8atbase 37303 . . . . . . . 8 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
4434, 43syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑄 ∈ (Base‘𝐾))
4531, 8atbase 37303 . . . . . . . 8 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
4635, 45syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑅 ∈ (Base‘𝐾))
4731, 6latjcl 18157 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → (𝑄 𝑅) ∈ (Base‘𝐾))
4842, 44, 46, 47syl3anc 1370 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑃𝐶(𝑄 𝑅)) → (𝑄 𝑅) ∈ (Base‘𝐾))
4930, 33, 483jca 1127 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑃𝐶(𝑄 𝑅)) → (𝐾 ∈ HL ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾)))
5031, 19, 7cvrle 37292 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾)) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑃 (𝑄 𝑅))
5149, 50sylancom 588 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑃 (𝑄 𝑅))
5240, 51jca 512 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑃𝐶(𝑄 𝑅)) → (𝑄𝑅𝑃 (𝑄 𝑅)))
5352ex 413 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑃𝐶(𝑄 𝑅) → (𝑄𝑅𝑃 (𝑄 𝑅))))
5423, 53impbid 211 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑄𝑅𝑃 (𝑄 𝑅)) ↔ 𝑃𝐶(𝑄 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  cfv 6433  (class class class)co 7275  Basecbs 16912  lecple 16969  joincjn 18029  0.cp0 18141  Latclat 18149  ccvr 37276  Atomscatm 37277  AtLatcal 37278  HLchlt 37364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-lat 18150  df-clat 18217  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365
This theorem is referenced by:  atcvrj2  37447
  Copyright terms: Public domain W3C validator