![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > deranglem | Structured version Visualization version GIF version |
Description: Lemma for derangements. (Contributed by Mario Carneiro, 19-Jan-2015.) |
Ref | Expression |
---|---|
deranglem | ⊢ (𝐴 ∈ Fin → {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐴 ∧ 𝜑)} ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapfi 8552 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ∈ Fin) → (𝐴 ↑𝑚 𝐴) ∈ Fin) | |
2 | f1of 6393 | . . . . . 6 ⊢ (𝑓:𝐴–1-1-onto→𝐴 → 𝑓:𝐴⟶𝐴) | |
3 | 2 | adantr 474 | . . . . 5 ⊢ ((𝑓:𝐴–1-1-onto→𝐴 ∧ 𝜑) → 𝑓:𝐴⟶𝐴) |
4 | elmapg 8155 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ∈ Fin) → (𝑓 ∈ (𝐴 ↑𝑚 𝐴) ↔ 𝑓:𝐴⟶𝐴)) | |
5 | 3, 4 | syl5ibr 238 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ∈ Fin) → ((𝑓:𝐴–1-1-onto→𝐴 ∧ 𝜑) → 𝑓 ∈ (𝐴 ↑𝑚 𝐴))) |
6 | 5 | abssdv 3897 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ∈ Fin) → {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐴 ∧ 𝜑)} ⊆ (𝐴 ↑𝑚 𝐴)) |
7 | ssfi 8470 | . . 3 ⊢ (((𝐴 ↑𝑚 𝐴) ∈ Fin ∧ {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐴 ∧ 𝜑)} ⊆ (𝐴 ↑𝑚 𝐴)) → {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐴 ∧ 𝜑)} ∈ Fin) | |
8 | 1, 6, 7 | syl2anc 579 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ∈ Fin) → {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐴 ∧ 𝜑)} ∈ Fin) |
9 | 8 | anidms 562 | 1 ⊢ (𝐴 ∈ Fin → {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐴 ∧ 𝜑)} ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∈ wcel 2107 {cab 2763 ⊆ wss 3792 ⟶wf 6133 –1-1-onto→wf1o 6136 (class class class)co 6924 ↑𝑚 cmap 8142 Fincfn 8243 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-1st 7447 df-2nd 7448 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-1o 7845 df-2o 7846 df-oadd 7849 df-er 8028 df-map 8144 df-pm 8145 df-en 8244 df-dom 8245 df-sdom 8246 df-fin 8247 |
This theorem is referenced by: derangf 31753 derangenlem 31756 subfaclefac 31761 subfacp1lem3 31767 subfacp1lem5 31769 subfacp1lem6 31770 |
Copyright terms: Public domain | W3C validator |