![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > deranglem | Structured version Visualization version GIF version |
Description: Lemma for derangements. (Contributed by Mario Carneiro, 19-Jan-2015.) |
Ref | Expression |
---|---|
deranglem | ⊢ (𝐴 ∈ Fin → {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐴 ∧ 𝜑)} ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapfi 9385 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ∈ Fin) → (𝐴 ↑m 𝐴) ∈ Fin) | |
2 | f1of 6848 | . . . . . 6 ⊢ (𝑓:𝐴–1-1-onto→𝐴 → 𝑓:𝐴⟶𝐴) | |
3 | 2 | adantr 480 | . . . . 5 ⊢ ((𝑓:𝐴–1-1-onto→𝐴 ∧ 𝜑) → 𝑓:𝐴⟶𝐴) |
4 | elmapg 8877 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ∈ Fin) → (𝑓 ∈ (𝐴 ↑m 𝐴) ↔ 𝑓:𝐴⟶𝐴)) | |
5 | 3, 4 | imbitrrid 246 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ∈ Fin) → ((𝑓:𝐴–1-1-onto→𝐴 ∧ 𝜑) → 𝑓 ∈ (𝐴 ↑m 𝐴))) |
6 | 5 | abssdv 4077 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ∈ Fin) → {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐴 ∧ 𝜑)} ⊆ (𝐴 ↑m 𝐴)) |
7 | ssfi 9211 | . . 3 ⊢ (((𝐴 ↑m 𝐴) ∈ Fin ∧ {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐴 ∧ 𝜑)} ⊆ (𝐴 ↑m 𝐴)) → {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐴 ∧ 𝜑)} ∈ Fin) | |
8 | 1, 6, 7 | syl2anc 584 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ∈ Fin) → {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐴 ∧ 𝜑)} ∈ Fin) |
9 | 8 | anidms 566 | 1 ⊢ (𝐴 ∈ Fin → {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐴 ∧ 𝜑)} ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2105 {cab 2711 ⊆ wss 3962 ⟶wf 6558 –1-1-onto→wf1o 6561 (class class class)co 7430 ↑m cmap 8864 Fincfn 8983 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-1o 8504 df-map 8866 df-pm 8867 df-en 8984 df-dom 8985 df-fin 8987 |
This theorem is referenced by: derangf 35152 derangenlem 35155 subfaclefac 35160 subfacp1lem3 35166 subfacp1lem5 35168 subfacp1lem6 35169 |
Copyright terms: Public domain | W3C validator |