Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > deranglem | Structured version Visualization version GIF version |
Description: Lemma for derangements. (Contributed by Mario Carneiro, 19-Jan-2015.) |
Ref | Expression |
---|---|
deranglem | ⊢ (𝐴 ∈ Fin → {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐴 ∧ 𝜑)} ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapfi 9103 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ∈ Fin) → (𝐴 ↑m 𝐴) ∈ Fin) | |
2 | f1of 6709 | . . . . . 6 ⊢ (𝑓:𝐴–1-1-onto→𝐴 → 𝑓:𝐴⟶𝐴) | |
3 | 2 | adantr 481 | . . . . 5 ⊢ ((𝑓:𝐴–1-1-onto→𝐴 ∧ 𝜑) → 𝑓:𝐴⟶𝐴) |
4 | elmapg 8616 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ∈ Fin) → (𝑓 ∈ (𝐴 ↑m 𝐴) ↔ 𝑓:𝐴⟶𝐴)) | |
5 | 3, 4 | syl5ibr 245 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ∈ Fin) → ((𝑓:𝐴–1-1-onto→𝐴 ∧ 𝜑) → 𝑓 ∈ (𝐴 ↑m 𝐴))) |
6 | 5 | abssdv 4002 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ∈ Fin) → {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐴 ∧ 𝜑)} ⊆ (𝐴 ↑m 𝐴)) |
7 | ssfi 8944 | . . 3 ⊢ (((𝐴 ↑m 𝐴) ∈ Fin ∧ {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐴 ∧ 𝜑)} ⊆ (𝐴 ↑m 𝐴)) → {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐴 ∧ 𝜑)} ∈ Fin) | |
8 | 1, 6, 7 | syl2anc 584 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ∈ Fin) → {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐴 ∧ 𝜑)} ∈ Fin) |
9 | 8 | anidms 567 | 1 ⊢ (𝐴 ∈ Fin → {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐴 ∧ 𝜑)} ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 {cab 2715 ⊆ wss 3887 ⟶wf 6423 –1-1-onto→wf1o 6426 (class class class)co 7268 ↑m cmap 8603 Fincfn 8721 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5222 ax-nul 5229 ax-pow 5287 ax-pr 5351 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3432 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5485 df-eprel 5491 df-po 5499 df-so 5500 df-fr 5540 df-we 5542 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-ord 6263 df-on 6264 df-lim 6265 df-suc 6266 df-iota 6385 df-fun 6429 df-fn 6430 df-f 6431 df-f1 6432 df-fo 6433 df-f1o 6434 df-fv 6435 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7704 df-1st 7821 df-2nd 7822 df-1o 8285 df-map 8605 df-pm 8606 df-en 8722 df-fin 8725 |
This theorem is referenced by: derangf 33116 derangenlem 33119 subfaclefac 33124 subfacp1lem3 33130 subfacp1lem5 33132 subfacp1lem6 33133 |
Copyright terms: Public domain | W3C validator |