Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  deranglem Structured version   Visualization version   GIF version

Theorem deranglem 32487
Description: Lemma for derangements. (Contributed by Mario Carneiro, 19-Jan-2015.)
Assertion
Ref Expression
deranglem (𝐴 ∈ Fin → {𝑓 ∣ (𝑓:𝐴1-1-onto𝐴𝜑)} ∈ Fin)
Distinct variable group:   𝐴,𝑓
Allowed substitution hint:   𝜑(𝑓)

Proof of Theorem deranglem
StepHypRef Expression
1 mapfi 8808 . . 3 ((𝐴 ∈ Fin ∧ 𝐴 ∈ Fin) → (𝐴m 𝐴) ∈ Fin)
2 f1of 6597 . . . . . 6 (𝑓:𝐴1-1-onto𝐴𝑓:𝐴𝐴)
32adantr 484 . . . . 5 ((𝑓:𝐴1-1-onto𝐴𝜑) → 𝑓:𝐴𝐴)
4 elmapg 8406 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐴 ∈ Fin) → (𝑓 ∈ (𝐴m 𝐴) ↔ 𝑓:𝐴𝐴))
53, 4syl5ibr 249 . . . 4 ((𝐴 ∈ Fin ∧ 𝐴 ∈ Fin) → ((𝑓:𝐴1-1-onto𝐴𝜑) → 𝑓 ∈ (𝐴m 𝐴)))
65abssdv 4020 . . 3 ((𝐴 ∈ Fin ∧ 𝐴 ∈ Fin) → {𝑓 ∣ (𝑓:𝐴1-1-onto𝐴𝜑)} ⊆ (𝐴m 𝐴))
7 ssfi 8726 . . 3 (((𝐴m 𝐴) ∈ Fin ∧ {𝑓 ∣ (𝑓:𝐴1-1-onto𝐴𝜑)} ⊆ (𝐴m 𝐴)) → {𝑓 ∣ (𝑓:𝐴1-1-onto𝐴𝜑)} ∈ Fin)
81, 6, 7syl2anc 587 . 2 ((𝐴 ∈ Fin ∧ 𝐴 ∈ Fin) → {𝑓 ∣ (𝑓:𝐴1-1-onto𝐴𝜑)} ∈ Fin)
98anidms 570 1 (𝐴 ∈ Fin → {𝑓 ∣ (𝑓:𝐴1-1-onto𝐴𝜑)} ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2114  {cab 2800  wss 3908  wf 6330  1-1-ontowf1o 6333  (class class class)co 7140  m cmap 8393  Fincfn 8496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500
This theorem is referenced by:  derangf  32489  derangenlem  32492  subfaclefac  32497  subfacp1lem3  32503  subfacp1lem5  32505  subfacp1lem6  32506
  Copyright terms: Public domain W3C validator