Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > deranglem | Structured version Visualization version GIF version |
Description: Lemma for derangements. (Contributed by Mario Carneiro, 19-Jan-2015.) |
Ref | Expression |
---|---|
deranglem | ⊢ (𝐴 ∈ Fin → {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐴 ∧ 𝜑)} ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapfi 9045 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ∈ Fin) → (𝐴 ↑m 𝐴) ∈ Fin) | |
2 | f1of 6700 | . . . . . 6 ⊢ (𝑓:𝐴–1-1-onto→𝐴 → 𝑓:𝐴⟶𝐴) | |
3 | 2 | adantr 480 | . . . . 5 ⊢ ((𝑓:𝐴–1-1-onto→𝐴 ∧ 𝜑) → 𝑓:𝐴⟶𝐴) |
4 | elmapg 8586 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ∈ Fin) → (𝑓 ∈ (𝐴 ↑m 𝐴) ↔ 𝑓:𝐴⟶𝐴)) | |
5 | 3, 4 | syl5ibr 245 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ∈ Fin) → ((𝑓:𝐴–1-1-onto→𝐴 ∧ 𝜑) → 𝑓 ∈ (𝐴 ↑m 𝐴))) |
6 | 5 | abssdv 3998 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ∈ Fin) → {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐴 ∧ 𝜑)} ⊆ (𝐴 ↑m 𝐴)) |
7 | ssfi 8918 | . . 3 ⊢ (((𝐴 ↑m 𝐴) ∈ Fin ∧ {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐴 ∧ 𝜑)} ⊆ (𝐴 ↑m 𝐴)) → {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐴 ∧ 𝜑)} ∈ Fin) | |
8 | 1, 6, 7 | syl2anc 583 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ∈ Fin) → {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐴 ∧ 𝜑)} ∈ Fin) |
9 | 8 | anidms 566 | 1 ⊢ (𝐴 ∈ Fin → {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐴 ∧ 𝜑)} ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 {cab 2715 ⊆ wss 3883 ⟶wf 6414 –1-1-onto→wf1o 6417 (class class class)co 7255 ↑m cmap 8573 Fincfn 8691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-1o 8267 df-map 8575 df-pm 8576 df-en 8692 df-fin 8695 |
This theorem is referenced by: derangf 33030 derangenlem 33033 subfaclefac 33038 subfacp1lem3 33044 subfacp1lem5 33046 subfacp1lem6 33047 |
Copyright terms: Public domain | W3C validator |