| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > invfun | Structured version Visualization version GIF version | ||
| Description: The inverse relation is a function, which is to say that every morphism has at most one inverse. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| invfval.b | ⊢ 𝐵 = (Base‘𝐶) |
| invfval.n | ⊢ 𝑁 = (Inv‘𝐶) |
| invfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| invss.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| invss.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| invfun | ⊢ (𝜑 → Fun (𝑋𝑁𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | invfval.n | . . . 4 ⊢ 𝑁 = (Inv‘𝐶) | |
| 3 | invfval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 4 | invss.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 5 | invss.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 6 | eqid 2729 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 7 | 1, 2, 3, 4, 5, 6 | invss 17723 | . . 3 ⊢ (𝜑 → (𝑋𝑁𝑌) ⊆ ((𝑋(Hom ‘𝐶)𝑌) × (𝑌(Hom ‘𝐶)𝑋))) |
| 8 | relxp 5656 | . . 3 ⊢ Rel ((𝑋(Hom ‘𝐶)𝑌) × (𝑌(Hom ‘𝐶)𝑋)) | |
| 9 | relss 5744 | . . 3 ⊢ ((𝑋𝑁𝑌) ⊆ ((𝑋(Hom ‘𝐶)𝑌) × (𝑌(Hom ‘𝐶)𝑋)) → (Rel ((𝑋(Hom ‘𝐶)𝑌) × (𝑌(Hom ‘𝐶)𝑋)) → Rel (𝑋𝑁𝑌))) | |
| 10 | 7, 8, 9 | mpisyl 21 | . 2 ⊢ (𝜑 → Rel (𝑋𝑁𝑌)) |
| 11 | eqid 2729 | . . . . . 6 ⊢ (Sect‘𝐶) = (Sect‘𝐶) | |
| 12 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓(𝑋𝑁𝑌)𝑔 ∧ 𝑓(𝑋𝑁𝑌)ℎ)) → 𝐶 ∈ Cat) |
| 13 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓(𝑋𝑁𝑌)𝑔 ∧ 𝑓(𝑋𝑁𝑌)ℎ)) → 𝑌 ∈ 𝐵) |
| 14 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓(𝑋𝑁𝑌)𝑔 ∧ 𝑓(𝑋𝑁𝑌)ℎ)) → 𝑋 ∈ 𝐵) |
| 15 | 1, 2, 3, 4, 5, 11 | isinv 17722 | . . . . . . . 8 ⊢ (𝜑 → (𝑓(𝑋𝑁𝑌)𝑔 ↔ (𝑓(𝑋(Sect‘𝐶)𝑌)𝑔 ∧ 𝑔(𝑌(Sect‘𝐶)𝑋)𝑓))) |
| 16 | 15 | simplbda 499 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑓(𝑋𝑁𝑌)𝑔) → 𝑔(𝑌(Sect‘𝐶)𝑋)𝑓) |
| 17 | 16 | adantrr 717 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓(𝑋𝑁𝑌)𝑔 ∧ 𝑓(𝑋𝑁𝑌)ℎ)) → 𝑔(𝑌(Sect‘𝐶)𝑋)𝑓) |
| 18 | 1, 2, 3, 4, 5, 11 | isinv 17722 | . . . . . . . 8 ⊢ (𝜑 → (𝑓(𝑋𝑁𝑌)ℎ ↔ (𝑓(𝑋(Sect‘𝐶)𝑌)ℎ ∧ ℎ(𝑌(Sect‘𝐶)𝑋)𝑓))) |
| 19 | 18 | simprbda 498 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑓(𝑋𝑁𝑌)ℎ) → 𝑓(𝑋(Sect‘𝐶)𝑌)ℎ) |
| 20 | 19 | adantrl 716 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓(𝑋𝑁𝑌)𝑔 ∧ 𝑓(𝑋𝑁𝑌)ℎ)) → 𝑓(𝑋(Sect‘𝐶)𝑌)ℎ) |
| 21 | 1, 11, 12, 13, 14, 17, 20 | sectcan 17717 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓(𝑋𝑁𝑌)𝑔 ∧ 𝑓(𝑋𝑁𝑌)ℎ)) → 𝑔 = ℎ) |
| 22 | 21 | ex 412 | . . . 4 ⊢ (𝜑 → ((𝑓(𝑋𝑁𝑌)𝑔 ∧ 𝑓(𝑋𝑁𝑌)ℎ) → 𝑔 = ℎ)) |
| 23 | 22 | alrimiv 1927 | . . 3 ⊢ (𝜑 → ∀ℎ((𝑓(𝑋𝑁𝑌)𝑔 ∧ 𝑓(𝑋𝑁𝑌)ℎ) → 𝑔 = ℎ)) |
| 24 | 23 | alrimivv 1928 | . 2 ⊢ (𝜑 → ∀𝑓∀𝑔∀ℎ((𝑓(𝑋𝑁𝑌)𝑔 ∧ 𝑓(𝑋𝑁𝑌)ℎ) → 𝑔 = ℎ)) |
| 25 | dffun2 6521 | . 2 ⊢ (Fun (𝑋𝑁𝑌) ↔ (Rel (𝑋𝑁𝑌) ∧ ∀𝑓∀𝑔∀ℎ((𝑓(𝑋𝑁𝑌)𝑔 ∧ 𝑓(𝑋𝑁𝑌)ℎ) → 𝑔 = ℎ))) | |
| 26 | 10, 24, 25 | sylanbrc 583 | 1 ⊢ (𝜑 → Fun (𝑋𝑁𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 class class class wbr 5107 × cxp 5636 Rel wrel 5643 Fun wfun 6505 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 Hom chom 17231 Catccat 17625 Sectcsect 17706 Invcinv 17707 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-cat 17629 df-cid 17630 df-sect 17709 df-inv 17710 |
| This theorem is referenced by: inviso1 17728 invf 17730 invco 17733 idinv 17751 ffthiso 17893 fuciso 17940 setciso 18053 catciso 18073 rngciso 20547 ringciso 20581 rngcisoALTV 48265 ringcisoALTV 48299 |
| Copyright terms: Public domain | W3C validator |