![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > invfun | Structured version Visualization version GIF version |
Description: The inverse relation is a function, which is to say that every morphism has at most one inverse. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
invfval.b | ⊢ 𝐵 = (Base‘𝐶) |
invfval.n | ⊢ 𝑁 = (Inv‘𝐶) |
invfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
invfval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
invfval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
invfun | ⊢ (𝜑 → Fun (𝑋𝑁𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | invfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
2 | invfval.n | . . . 4 ⊢ 𝑁 = (Inv‘𝐶) | |
3 | invfval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
4 | invfval.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | invfval.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | eqid 2731 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
7 | 1, 2, 3, 4, 5, 6 | invss 17658 | . . 3 ⊢ (𝜑 → (𝑋𝑁𝑌) ⊆ ((𝑋(Hom ‘𝐶)𝑌) × (𝑌(Hom ‘𝐶)𝑋))) |
8 | relxp 5656 | . . 3 ⊢ Rel ((𝑋(Hom ‘𝐶)𝑌) × (𝑌(Hom ‘𝐶)𝑋)) | |
9 | relss 5742 | . . 3 ⊢ ((𝑋𝑁𝑌) ⊆ ((𝑋(Hom ‘𝐶)𝑌) × (𝑌(Hom ‘𝐶)𝑋)) → (Rel ((𝑋(Hom ‘𝐶)𝑌) × (𝑌(Hom ‘𝐶)𝑋)) → Rel (𝑋𝑁𝑌))) | |
10 | 7, 8, 9 | mpisyl 21 | . 2 ⊢ (𝜑 → Rel (𝑋𝑁𝑌)) |
11 | eqid 2731 | . . . . . 6 ⊢ (Sect‘𝐶) = (Sect‘𝐶) | |
12 | 3 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓(𝑋𝑁𝑌)𝑔 ∧ 𝑓(𝑋𝑁𝑌)ℎ)) → 𝐶 ∈ Cat) |
13 | 5 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓(𝑋𝑁𝑌)𝑔 ∧ 𝑓(𝑋𝑁𝑌)ℎ)) → 𝑌 ∈ 𝐵) |
14 | 4 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓(𝑋𝑁𝑌)𝑔 ∧ 𝑓(𝑋𝑁𝑌)ℎ)) → 𝑋 ∈ 𝐵) |
15 | 1, 2, 3, 4, 5, 11 | isinv 17657 | . . . . . . . 8 ⊢ (𝜑 → (𝑓(𝑋𝑁𝑌)𝑔 ↔ (𝑓(𝑋(Sect‘𝐶)𝑌)𝑔 ∧ 𝑔(𝑌(Sect‘𝐶)𝑋)𝑓))) |
16 | 15 | simplbda 500 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑓(𝑋𝑁𝑌)𝑔) → 𝑔(𝑌(Sect‘𝐶)𝑋)𝑓) |
17 | 16 | adantrr 715 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓(𝑋𝑁𝑌)𝑔 ∧ 𝑓(𝑋𝑁𝑌)ℎ)) → 𝑔(𝑌(Sect‘𝐶)𝑋)𝑓) |
18 | 1, 2, 3, 4, 5, 11 | isinv 17657 | . . . . . . . 8 ⊢ (𝜑 → (𝑓(𝑋𝑁𝑌)ℎ ↔ (𝑓(𝑋(Sect‘𝐶)𝑌)ℎ ∧ ℎ(𝑌(Sect‘𝐶)𝑋)𝑓))) |
19 | 18 | simprbda 499 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑓(𝑋𝑁𝑌)ℎ) → 𝑓(𝑋(Sect‘𝐶)𝑌)ℎ) |
20 | 19 | adantrl 714 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓(𝑋𝑁𝑌)𝑔 ∧ 𝑓(𝑋𝑁𝑌)ℎ)) → 𝑓(𝑋(Sect‘𝐶)𝑌)ℎ) |
21 | 1, 11, 12, 13, 14, 17, 20 | sectcan 17652 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓(𝑋𝑁𝑌)𝑔 ∧ 𝑓(𝑋𝑁𝑌)ℎ)) → 𝑔 = ℎ) |
22 | 21 | ex 413 | . . . 4 ⊢ (𝜑 → ((𝑓(𝑋𝑁𝑌)𝑔 ∧ 𝑓(𝑋𝑁𝑌)ℎ) → 𝑔 = ℎ)) |
23 | 22 | alrimiv 1930 | . . 3 ⊢ (𝜑 → ∀ℎ((𝑓(𝑋𝑁𝑌)𝑔 ∧ 𝑓(𝑋𝑁𝑌)ℎ) → 𝑔 = ℎ)) |
24 | 23 | alrimivv 1931 | . 2 ⊢ (𝜑 → ∀𝑓∀𝑔∀ℎ((𝑓(𝑋𝑁𝑌)𝑔 ∧ 𝑓(𝑋𝑁𝑌)ℎ) → 𝑔 = ℎ)) |
25 | dffun2 6511 | . 2 ⊢ (Fun (𝑋𝑁𝑌) ↔ (Rel (𝑋𝑁𝑌) ∧ ∀𝑓∀𝑔∀ℎ((𝑓(𝑋𝑁𝑌)𝑔 ∧ 𝑓(𝑋𝑁𝑌)ℎ) → 𝑔 = ℎ))) | |
26 | 10, 24, 25 | sylanbrc 583 | 1 ⊢ (𝜑 → Fun (𝑋𝑁𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∀wal 1539 = wceq 1541 ∈ wcel 2106 ⊆ wss 3913 class class class wbr 5110 × cxp 5636 Rel wrel 5643 Fun wfun 6495 ‘cfv 6501 (class class class)co 7362 Basecbs 17094 Hom chom 17158 Catccat 17558 Sectcsect 17641 Invcinv 17642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5247 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3351 df-reu 3352 df-rab 3406 df-v 3448 df-sbc 3743 df-csb 3859 df-dif 3916 df-un 3918 df-in 3920 df-ss 3930 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-iun 4961 df-br 5111 df-opab 5173 df-mpt 5194 df-id 5536 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-riota 7318 df-ov 7365 df-oprab 7366 df-mpo 7367 df-1st 7926 df-2nd 7927 df-cat 17562 df-cid 17563 df-sect 17644 df-inv 17645 |
This theorem is referenced by: inviso1 17663 invf 17665 invco 17668 idinv 17686 ffthiso 17830 fuciso 17878 setciso 17991 catciso 18011 rngciso 46400 rngcisoALTV 46412 ringciso 46451 ringcisoALTV 46475 |
Copyright terms: Public domain | W3C validator |