MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invfun Structured version   Visualization version   GIF version

Theorem invfun 17726
Description: The inverse relation is a function, which is to say that every morphism has at most one inverse. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
invfval.b 𝐵 = (Base‘𝐶)
invfval.n 𝑁 = (Inv‘𝐶)
invfval.c (𝜑𝐶 ∈ Cat)
invss.x (𝜑𝑋𝐵)
invss.y (𝜑𝑌𝐵)
Assertion
Ref Expression
invfun (𝜑 → Fun (𝑋𝑁𝑌))

Proof of Theorem invfun
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 invfval.b . . . 4 𝐵 = (Base‘𝐶)
2 invfval.n . . . 4 𝑁 = (Inv‘𝐶)
3 invfval.c . . . 4 (𝜑𝐶 ∈ Cat)
4 invss.x . . . 4 (𝜑𝑋𝐵)
5 invss.y . . . 4 (𝜑𝑌𝐵)
6 eqid 2729 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
71, 2, 3, 4, 5, 6invss 17723 . . 3 (𝜑 → (𝑋𝑁𝑌) ⊆ ((𝑋(Hom ‘𝐶)𝑌) × (𝑌(Hom ‘𝐶)𝑋)))
8 relxp 5656 . . 3 Rel ((𝑋(Hom ‘𝐶)𝑌) × (𝑌(Hom ‘𝐶)𝑋))
9 relss 5744 . . 3 ((𝑋𝑁𝑌) ⊆ ((𝑋(Hom ‘𝐶)𝑌) × (𝑌(Hom ‘𝐶)𝑋)) → (Rel ((𝑋(Hom ‘𝐶)𝑌) × (𝑌(Hom ‘𝐶)𝑋)) → Rel (𝑋𝑁𝑌)))
107, 8, 9mpisyl 21 . 2 (𝜑 → Rel (𝑋𝑁𝑌))
11 eqid 2729 . . . . . 6 (Sect‘𝐶) = (Sect‘𝐶)
123adantr 480 . . . . . 6 ((𝜑 ∧ (𝑓(𝑋𝑁𝑌)𝑔𝑓(𝑋𝑁𝑌))) → 𝐶 ∈ Cat)
135adantr 480 . . . . . 6 ((𝜑 ∧ (𝑓(𝑋𝑁𝑌)𝑔𝑓(𝑋𝑁𝑌))) → 𝑌𝐵)
144adantr 480 . . . . . 6 ((𝜑 ∧ (𝑓(𝑋𝑁𝑌)𝑔𝑓(𝑋𝑁𝑌))) → 𝑋𝐵)
151, 2, 3, 4, 5, 11isinv 17722 . . . . . . . 8 (𝜑 → (𝑓(𝑋𝑁𝑌)𝑔 ↔ (𝑓(𝑋(Sect‘𝐶)𝑌)𝑔𝑔(𝑌(Sect‘𝐶)𝑋)𝑓)))
1615simplbda 499 . . . . . . 7 ((𝜑𝑓(𝑋𝑁𝑌)𝑔) → 𝑔(𝑌(Sect‘𝐶)𝑋)𝑓)
1716adantrr 717 . . . . . 6 ((𝜑 ∧ (𝑓(𝑋𝑁𝑌)𝑔𝑓(𝑋𝑁𝑌))) → 𝑔(𝑌(Sect‘𝐶)𝑋)𝑓)
181, 2, 3, 4, 5, 11isinv 17722 . . . . . . . 8 (𝜑 → (𝑓(𝑋𝑁𝑌) ↔ (𝑓(𝑋(Sect‘𝐶)𝑌)(𝑌(Sect‘𝐶)𝑋)𝑓)))
1918simprbda 498 . . . . . . 7 ((𝜑𝑓(𝑋𝑁𝑌)) → 𝑓(𝑋(Sect‘𝐶)𝑌))
2019adantrl 716 . . . . . 6 ((𝜑 ∧ (𝑓(𝑋𝑁𝑌)𝑔𝑓(𝑋𝑁𝑌))) → 𝑓(𝑋(Sect‘𝐶)𝑌))
211, 11, 12, 13, 14, 17, 20sectcan 17717 . . . . 5 ((𝜑 ∧ (𝑓(𝑋𝑁𝑌)𝑔𝑓(𝑋𝑁𝑌))) → 𝑔 = )
2221ex 412 . . . 4 (𝜑 → ((𝑓(𝑋𝑁𝑌)𝑔𝑓(𝑋𝑁𝑌)) → 𝑔 = ))
2322alrimiv 1927 . . 3 (𝜑 → ∀((𝑓(𝑋𝑁𝑌)𝑔𝑓(𝑋𝑁𝑌)) → 𝑔 = ))
2423alrimivv 1928 . 2 (𝜑 → ∀𝑓𝑔((𝑓(𝑋𝑁𝑌)𝑔𝑓(𝑋𝑁𝑌)) → 𝑔 = ))
25 dffun2 6521 . 2 (Fun (𝑋𝑁𝑌) ↔ (Rel (𝑋𝑁𝑌) ∧ ∀𝑓𝑔((𝑓(𝑋𝑁𝑌)𝑔𝑓(𝑋𝑁𝑌)) → 𝑔 = )))
2610, 24, 25sylanbrc 583 1 (𝜑 → Fun (𝑋𝑁𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  wcel 2109  wss 3914   class class class wbr 5107   × cxp 5636  Rel wrel 5643  Fun wfun 6505  cfv 6511  (class class class)co 7387  Basecbs 17179  Hom chom 17231  Catccat 17625  Sectcsect 17706  Invcinv 17707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-cat 17629  df-cid 17630  df-sect 17709  df-inv 17710
This theorem is referenced by:  inviso1  17728  invf  17730  invco  17733  idinv  17751  ffthiso  17893  fuciso  17940  setciso  18053  catciso  18073  rngciso  20547  ringciso  20581  rngcisoALTV  48265  ringcisoALTV  48299
  Copyright terms: Public domain W3C validator