| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > invfun | Structured version Visualization version GIF version | ||
| Description: The inverse relation is a function, which is to say that every morphism has at most one inverse. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| invfval.b | ⊢ 𝐵 = (Base‘𝐶) |
| invfval.n | ⊢ 𝑁 = (Inv‘𝐶) |
| invfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| invss.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| invss.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| invfun | ⊢ (𝜑 → Fun (𝑋𝑁𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | invfval.n | . . . 4 ⊢ 𝑁 = (Inv‘𝐶) | |
| 3 | invfval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 4 | invss.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 5 | invss.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 6 | eqid 2735 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 7 | 1, 2, 3, 4, 5, 6 | invss 17774 | . . 3 ⊢ (𝜑 → (𝑋𝑁𝑌) ⊆ ((𝑋(Hom ‘𝐶)𝑌) × (𝑌(Hom ‘𝐶)𝑋))) |
| 8 | relxp 5672 | . . 3 ⊢ Rel ((𝑋(Hom ‘𝐶)𝑌) × (𝑌(Hom ‘𝐶)𝑋)) | |
| 9 | relss 5760 | . . 3 ⊢ ((𝑋𝑁𝑌) ⊆ ((𝑋(Hom ‘𝐶)𝑌) × (𝑌(Hom ‘𝐶)𝑋)) → (Rel ((𝑋(Hom ‘𝐶)𝑌) × (𝑌(Hom ‘𝐶)𝑋)) → Rel (𝑋𝑁𝑌))) | |
| 10 | 7, 8, 9 | mpisyl 21 | . 2 ⊢ (𝜑 → Rel (𝑋𝑁𝑌)) |
| 11 | eqid 2735 | . . . . . 6 ⊢ (Sect‘𝐶) = (Sect‘𝐶) | |
| 12 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓(𝑋𝑁𝑌)𝑔 ∧ 𝑓(𝑋𝑁𝑌)ℎ)) → 𝐶 ∈ Cat) |
| 13 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓(𝑋𝑁𝑌)𝑔 ∧ 𝑓(𝑋𝑁𝑌)ℎ)) → 𝑌 ∈ 𝐵) |
| 14 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓(𝑋𝑁𝑌)𝑔 ∧ 𝑓(𝑋𝑁𝑌)ℎ)) → 𝑋 ∈ 𝐵) |
| 15 | 1, 2, 3, 4, 5, 11 | isinv 17773 | . . . . . . . 8 ⊢ (𝜑 → (𝑓(𝑋𝑁𝑌)𝑔 ↔ (𝑓(𝑋(Sect‘𝐶)𝑌)𝑔 ∧ 𝑔(𝑌(Sect‘𝐶)𝑋)𝑓))) |
| 16 | 15 | simplbda 499 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑓(𝑋𝑁𝑌)𝑔) → 𝑔(𝑌(Sect‘𝐶)𝑋)𝑓) |
| 17 | 16 | adantrr 717 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓(𝑋𝑁𝑌)𝑔 ∧ 𝑓(𝑋𝑁𝑌)ℎ)) → 𝑔(𝑌(Sect‘𝐶)𝑋)𝑓) |
| 18 | 1, 2, 3, 4, 5, 11 | isinv 17773 | . . . . . . . 8 ⊢ (𝜑 → (𝑓(𝑋𝑁𝑌)ℎ ↔ (𝑓(𝑋(Sect‘𝐶)𝑌)ℎ ∧ ℎ(𝑌(Sect‘𝐶)𝑋)𝑓))) |
| 19 | 18 | simprbda 498 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑓(𝑋𝑁𝑌)ℎ) → 𝑓(𝑋(Sect‘𝐶)𝑌)ℎ) |
| 20 | 19 | adantrl 716 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓(𝑋𝑁𝑌)𝑔 ∧ 𝑓(𝑋𝑁𝑌)ℎ)) → 𝑓(𝑋(Sect‘𝐶)𝑌)ℎ) |
| 21 | 1, 11, 12, 13, 14, 17, 20 | sectcan 17768 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓(𝑋𝑁𝑌)𝑔 ∧ 𝑓(𝑋𝑁𝑌)ℎ)) → 𝑔 = ℎ) |
| 22 | 21 | ex 412 | . . . 4 ⊢ (𝜑 → ((𝑓(𝑋𝑁𝑌)𝑔 ∧ 𝑓(𝑋𝑁𝑌)ℎ) → 𝑔 = ℎ)) |
| 23 | 22 | alrimiv 1927 | . . 3 ⊢ (𝜑 → ∀ℎ((𝑓(𝑋𝑁𝑌)𝑔 ∧ 𝑓(𝑋𝑁𝑌)ℎ) → 𝑔 = ℎ)) |
| 24 | 23 | alrimivv 1928 | . 2 ⊢ (𝜑 → ∀𝑓∀𝑔∀ℎ((𝑓(𝑋𝑁𝑌)𝑔 ∧ 𝑓(𝑋𝑁𝑌)ℎ) → 𝑔 = ℎ)) |
| 25 | dffun2 6541 | . 2 ⊢ (Fun (𝑋𝑁𝑌) ↔ (Rel (𝑋𝑁𝑌) ∧ ∀𝑓∀𝑔∀ℎ((𝑓(𝑋𝑁𝑌)𝑔 ∧ 𝑓(𝑋𝑁𝑌)ℎ) → 𝑔 = ℎ))) | |
| 26 | 10, 24, 25 | sylanbrc 583 | 1 ⊢ (𝜑 → Fun (𝑋𝑁𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 class class class wbr 5119 × cxp 5652 Rel wrel 5659 Fun wfun 6525 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 Hom chom 17282 Catccat 17676 Sectcsect 17757 Invcinv 17758 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-cat 17680 df-cid 17681 df-sect 17760 df-inv 17761 |
| This theorem is referenced by: inviso1 17779 invf 17781 invco 17784 idinv 17802 ffthiso 17944 fuciso 17991 setciso 18104 catciso 18124 rngciso 20598 ringciso 20632 rngcisoALTV 48252 ringcisoALTV 48286 |
| Copyright terms: Public domain | W3C validator |