![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > invfun | Structured version Visualization version GIF version |
Description: The inverse relation is a function, which is to say that every morphism has at most one inverse. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
invfval.b | ⊢ 𝐵 = (Base‘𝐶) |
invfval.n | ⊢ 𝑁 = (Inv‘𝐶) |
invfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
invfval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
invfval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
invfun | ⊢ (𝜑 → Fun (𝑋𝑁𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | invfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
2 | invfval.n | . . . 4 ⊢ 𝑁 = (Inv‘𝐶) | |
3 | invfval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
4 | invfval.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | invfval.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | eqid 2735 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
7 | 1, 2, 3, 4, 5, 6 | invss 17809 | . . 3 ⊢ (𝜑 → (𝑋𝑁𝑌) ⊆ ((𝑋(Hom ‘𝐶)𝑌) × (𝑌(Hom ‘𝐶)𝑋))) |
8 | relxp 5707 | . . 3 ⊢ Rel ((𝑋(Hom ‘𝐶)𝑌) × (𝑌(Hom ‘𝐶)𝑋)) | |
9 | relss 5794 | . . 3 ⊢ ((𝑋𝑁𝑌) ⊆ ((𝑋(Hom ‘𝐶)𝑌) × (𝑌(Hom ‘𝐶)𝑋)) → (Rel ((𝑋(Hom ‘𝐶)𝑌) × (𝑌(Hom ‘𝐶)𝑋)) → Rel (𝑋𝑁𝑌))) | |
10 | 7, 8, 9 | mpisyl 21 | . 2 ⊢ (𝜑 → Rel (𝑋𝑁𝑌)) |
11 | eqid 2735 | . . . . . 6 ⊢ (Sect‘𝐶) = (Sect‘𝐶) | |
12 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓(𝑋𝑁𝑌)𝑔 ∧ 𝑓(𝑋𝑁𝑌)ℎ)) → 𝐶 ∈ Cat) |
13 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓(𝑋𝑁𝑌)𝑔 ∧ 𝑓(𝑋𝑁𝑌)ℎ)) → 𝑌 ∈ 𝐵) |
14 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓(𝑋𝑁𝑌)𝑔 ∧ 𝑓(𝑋𝑁𝑌)ℎ)) → 𝑋 ∈ 𝐵) |
15 | 1, 2, 3, 4, 5, 11 | isinv 17808 | . . . . . . . 8 ⊢ (𝜑 → (𝑓(𝑋𝑁𝑌)𝑔 ↔ (𝑓(𝑋(Sect‘𝐶)𝑌)𝑔 ∧ 𝑔(𝑌(Sect‘𝐶)𝑋)𝑓))) |
16 | 15 | simplbda 499 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑓(𝑋𝑁𝑌)𝑔) → 𝑔(𝑌(Sect‘𝐶)𝑋)𝑓) |
17 | 16 | adantrr 717 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓(𝑋𝑁𝑌)𝑔 ∧ 𝑓(𝑋𝑁𝑌)ℎ)) → 𝑔(𝑌(Sect‘𝐶)𝑋)𝑓) |
18 | 1, 2, 3, 4, 5, 11 | isinv 17808 | . . . . . . . 8 ⊢ (𝜑 → (𝑓(𝑋𝑁𝑌)ℎ ↔ (𝑓(𝑋(Sect‘𝐶)𝑌)ℎ ∧ ℎ(𝑌(Sect‘𝐶)𝑋)𝑓))) |
19 | 18 | simprbda 498 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑓(𝑋𝑁𝑌)ℎ) → 𝑓(𝑋(Sect‘𝐶)𝑌)ℎ) |
20 | 19 | adantrl 716 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓(𝑋𝑁𝑌)𝑔 ∧ 𝑓(𝑋𝑁𝑌)ℎ)) → 𝑓(𝑋(Sect‘𝐶)𝑌)ℎ) |
21 | 1, 11, 12, 13, 14, 17, 20 | sectcan 17803 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓(𝑋𝑁𝑌)𝑔 ∧ 𝑓(𝑋𝑁𝑌)ℎ)) → 𝑔 = ℎ) |
22 | 21 | ex 412 | . . . 4 ⊢ (𝜑 → ((𝑓(𝑋𝑁𝑌)𝑔 ∧ 𝑓(𝑋𝑁𝑌)ℎ) → 𝑔 = ℎ)) |
23 | 22 | alrimiv 1925 | . . 3 ⊢ (𝜑 → ∀ℎ((𝑓(𝑋𝑁𝑌)𝑔 ∧ 𝑓(𝑋𝑁𝑌)ℎ) → 𝑔 = ℎ)) |
24 | 23 | alrimivv 1926 | . 2 ⊢ (𝜑 → ∀𝑓∀𝑔∀ℎ((𝑓(𝑋𝑁𝑌)𝑔 ∧ 𝑓(𝑋𝑁𝑌)ℎ) → 𝑔 = ℎ)) |
25 | dffun2 6573 | . 2 ⊢ (Fun (𝑋𝑁𝑌) ↔ (Rel (𝑋𝑁𝑌) ∧ ∀𝑓∀𝑔∀ℎ((𝑓(𝑋𝑁𝑌)𝑔 ∧ 𝑓(𝑋𝑁𝑌)ℎ) → 𝑔 = ℎ))) | |
26 | 10, 24, 25 | sylanbrc 583 | 1 ⊢ (𝜑 → Fun (𝑋𝑁𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1535 = wceq 1537 ∈ wcel 2106 ⊆ wss 3963 class class class wbr 5148 × cxp 5687 Rel wrel 5694 Fun wfun 6557 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 Hom chom 17309 Catccat 17709 Sectcsect 17792 Invcinv 17793 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-cat 17713 df-cid 17714 df-sect 17795 df-inv 17796 |
This theorem is referenced by: inviso1 17814 invf 17816 invco 17819 idinv 17837 ffthiso 17983 fuciso 18032 setciso 18145 catciso 18165 rngciso 20655 ringciso 20689 rngcisoALTV 48121 ringcisoALTV 48155 |
Copyright terms: Public domain | W3C validator |