MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invfun Structured version   Visualization version   GIF version

Theorem invfun 17476
Description: The inverse relation is a function, which is to say that every morphism has at most one inverse. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
invfval.b 𝐵 = (Base‘𝐶)
invfval.n 𝑁 = (Inv‘𝐶)
invfval.c (𝜑𝐶 ∈ Cat)
invfval.x (𝜑𝑋𝐵)
invfval.y (𝜑𝑌𝐵)
Assertion
Ref Expression
invfun (𝜑 → Fun (𝑋𝑁𝑌))

Proof of Theorem invfun
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 invfval.b . . . 4 𝐵 = (Base‘𝐶)
2 invfval.n . . . 4 𝑁 = (Inv‘𝐶)
3 invfval.c . . . 4 (𝜑𝐶 ∈ Cat)
4 invfval.x . . . 4 (𝜑𝑋𝐵)
5 invfval.y . . . 4 (𝜑𝑌𝐵)
6 eqid 2738 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
71, 2, 3, 4, 5, 6invss 17473 . . 3 (𝜑 → (𝑋𝑁𝑌) ⊆ ((𝑋(Hom ‘𝐶)𝑌) × (𝑌(Hom ‘𝐶)𝑋)))
8 relxp 5607 . . 3 Rel ((𝑋(Hom ‘𝐶)𝑌) × (𝑌(Hom ‘𝐶)𝑋))
9 relss 5692 . . 3 ((𝑋𝑁𝑌) ⊆ ((𝑋(Hom ‘𝐶)𝑌) × (𝑌(Hom ‘𝐶)𝑋)) → (Rel ((𝑋(Hom ‘𝐶)𝑌) × (𝑌(Hom ‘𝐶)𝑋)) → Rel (𝑋𝑁𝑌)))
107, 8, 9mpisyl 21 . 2 (𝜑 → Rel (𝑋𝑁𝑌))
11 eqid 2738 . . . . . 6 (Sect‘𝐶) = (Sect‘𝐶)
123adantr 481 . . . . . 6 ((𝜑 ∧ (𝑓(𝑋𝑁𝑌)𝑔𝑓(𝑋𝑁𝑌))) → 𝐶 ∈ Cat)
135adantr 481 . . . . . 6 ((𝜑 ∧ (𝑓(𝑋𝑁𝑌)𝑔𝑓(𝑋𝑁𝑌))) → 𝑌𝐵)
144adantr 481 . . . . . 6 ((𝜑 ∧ (𝑓(𝑋𝑁𝑌)𝑔𝑓(𝑋𝑁𝑌))) → 𝑋𝐵)
151, 2, 3, 4, 5, 11isinv 17472 . . . . . . . 8 (𝜑 → (𝑓(𝑋𝑁𝑌)𝑔 ↔ (𝑓(𝑋(Sect‘𝐶)𝑌)𝑔𝑔(𝑌(Sect‘𝐶)𝑋)𝑓)))
1615simplbda 500 . . . . . . 7 ((𝜑𝑓(𝑋𝑁𝑌)𝑔) → 𝑔(𝑌(Sect‘𝐶)𝑋)𝑓)
1716adantrr 714 . . . . . 6 ((𝜑 ∧ (𝑓(𝑋𝑁𝑌)𝑔𝑓(𝑋𝑁𝑌))) → 𝑔(𝑌(Sect‘𝐶)𝑋)𝑓)
181, 2, 3, 4, 5, 11isinv 17472 . . . . . . . 8 (𝜑 → (𝑓(𝑋𝑁𝑌) ↔ (𝑓(𝑋(Sect‘𝐶)𝑌)(𝑌(Sect‘𝐶)𝑋)𝑓)))
1918simprbda 499 . . . . . . 7 ((𝜑𝑓(𝑋𝑁𝑌)) → 𝑓(𝑋(Sect‘𝐶)𝑌))
2019adantrl 713 . . . . . 6 ((𝜑 ∧ (𝑓(𝑋𝑁𝑌)𝑔𝑓(𝑋𝑁𝑌))) → 𝑓(𝑋(Sect‘𝐶)𝑌))
211, 11, 12, 13, 14, 17, 20sectcan 17467 . . . . 5 ((𝜑 ∧ (𝑓(𝑋𝑁𝑌)𝑔𝑓(𝑋𝑁𝑌))) → 𝑔 = )
2221ex 413 . . . 4 (𝜑 → ((𝑓(𝑋𝑁𝑌)𝑔𝑓(𝑋𝑁𝑌)) → 𝑔 = ))
2322alrimiv 1930 . . 3 (𝜑 → ∀((𝑓(𝑋𝑁𝑌)𝑔𝑓(𝑋𝑁𝑌)) → 𝑔 = ))
2423alrimivv 1931 . 2 (𝜑 → ∀𝑓𝑔((𝑓(𝑋𝑁𝑌)𝑔𝑓(𝑋𝑁𝑌)) → 𝑔 = ))
25 dffun2 6443 . 2 (Fun (𝑋𝑁𝑌) ↔ (Rel (𝑋𝑁𝑌) ∧ ∀𝑓𝑔((𝑓(𝑋𝑁𝑌)𝑔𝑓(𝑋𝑁𝑌)) → 𝑔 = )))
2610, 24, 25sylanbrc 583 1 (𝜑 → Fun (𝑋𝑁𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1537   = wceq 1539  wcel 2106  wss 3887   class class class wbr 5074   × cxp 5587  Rel wrel 5594  Fun wfun 6427  cfv 6433  (class class class)co 7275  Basecbs 16912  Hom chom 16973  Catccat 17373  Sectcsect 17456  Invcinv 17457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-cat 17377  df-cid 17378  df-sect 17459  df-inv 17460
This theorem is referenced by:  inviso1  17478  invf  17480  invco  17483  idinv  17501  ffthiso  17645  fuciso  17693  setciso  17806  catciso  17826  rngciso  45540  rngcisoALTV  45552  ringciso  45591  ringcisoALTV  45615
  Copyright terms: Public domain W3C validator