Step | Hyp | Ref
| Expression |
1 | | vex 3427 |
. . . . . . . . . . 11
⊢ 𝑦 ∈ V |
2 | 1 | a1i 11 |
. . . . . . . . . 10
⊢ (⊤
→ 𝑦 ∈
V) |
3 | | vex 3427 |
. . . . . . . . . . . 12
⊢ 𝑓 ∈ V |
4 | 3 | resex 5927 |
. . . . . . . . . . 11
⊢ (𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)) ∈ V |
5 | 4 | a1i 11 |
. . . . . . . . . 10
⊢ (⊤
→ (𝑓 ↾
Pred(𝑅, 𝐴, 𝑦)) ∈ V) |
6 | 2, 5 | opco2 7933 |
. . . . . . . . 9
⊢ (⊤
→ (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) |
7 | 6 | mptru 1550 |
. . . . . . . 8
⊢ (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) |
8 | 7 | eqeq2i 2752 |
. . . . . . 7
⊢ ((𝑓‘𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) |
9 | 8 | ralbii 3091 |
. . . . . 6
⊢
(∀𝑦 ∈
𝑥 (𝑓‘𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) |
10 | 9 | 3anbi3i 1161 |
. . . . 5
⊢ ((𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ (𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))) |
11 | 10 | exbii 1855 |
. . . 4
⊢
(∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))) |
12 | 11 | abbii 2810 |
. . 3
⊢ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
13 | 12 | unieqi 4849 |
. 2
⊢ ∪ {𝑓
∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} = ∪ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
14 | | df-frecs 8065 |
. 2
⊢
frecs(𝑅, 𝐴, (𝐹 ∘ 2nd )) = ∪ {𝑓
∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
15 | | df-wrecs 8089 |
. 2
⊢
wrecs(𝑅, 𝐴, 𝐹) = ∪ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
16 | 13, 14, 15 | 3eqtr4ri 2778 |
1
⊢
wrecs(𝑅, 𝐴, 𝐹) = frecs(𝑅, 𝐴, (𝐹 ∘ 2nd )) |