Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  docaclN Structured version   Visualization version   GIF version

Theorem docaclN 41169
Description: Closure of subspace orthocomplement for DVecA partial vector space. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
docacl.h 𝐻 = (LHyp‘𝐾)
docacl.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
docacl.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
docacl.n = ((ocA‘𝐾)‘𝑊)
Assertion
Ref Expression
docaclN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → ( 𝑋) ∈ ran 𝐼)

Proof of Theorem docaclN
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . 3 (join‘𝐾) = (join‘𝐾)
2 eqid 2731 . . 3 (meet‘𝐾) = (meet‘𝐾)
3 eqid 2731 . . 3 (oc‘𝐾) = (oc‘𝐾)
4 docacl.h . . 3 𝐻 = (LHyp‘𝐾)
5 docacl.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
6 docacl.i . . 3 𝐼 = ((DIsoA‘𝐾)‘𝑊)
7 docacl.n . . 3 = ((ocA‘𝐾)‘𝑊)
81, 2, 3, 4, 5, 6, 7docavalN 41168 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → ( 𝑋) = (𝐼‘((((oc‘𝐾)‘(𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧}))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)))
94, 6diaf11N 41094 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼:dom 𝐼1-1-onto→ran 𝐼)
10 f1ofun 6765 . . . . 5 (𝐼:dom 𝐼1-1-onto→ran 𝐼 → Fun 𝐼)
119, 10syl 17 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Fun 𝐼)
1211adantr 480 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → Fun 𝐼)
13 hllat 39408 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
1413ad2antrr 726 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → 𝐾 ∈ Lat)
15 hlop 39407 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ OP)
1615ad2antrr 726 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → 𝐾 ∈ OP)
17 simpl 482 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
18 ssrab2 4030 . . . . . . . . . . 11 {𝑧 ∈ ran 𝐼𝑋𝑧} ⊆ ran 𝐼
1918a1i 11 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → {𝑧 ∈ ran 𝐼𝑋𝑧} ⊆ ran 𝐼)
204, 5, 6dia1elN 41099 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑇 ∈ ran 𝐼)
2120anim1i 615 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → (𝑇 ∈ ran 𝐼𝑋𝑇))
22 sseq2 3961 . . . . . . . . . . . . 13 (𝑧 = 𝑇 → (𝑋𝑧𝑋𝑇))
2322elrab 3647 . . . . . . . . . . . 12 (𝑇 ∈ {𝑧 ∈ ran 𝐼𝑋𝑧} ↔ (𝑇 ∈ ran 𝐼𝑋𝑇))
2421, 23sylibr 234 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → 𝑇 ∈ {𝑧 ∈ ran 𝐼𝑋𝑧})
2524ne0d 4292 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → {𝑧 ∈ ran 𝐼𝑋𝑧} ≠ ∅)
264, 6diaintclN 41103 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ({𝑧 ∈ ran 𝐼𝑋𝑧} ⊆ ran 𝐼 ∧ {𝑧 ∈ ran 𝐼𝑋𝑧} ≠ ∅)) → {𝑧 ∈ ran 𝐼𝑋𝑧} ∈ ran 𝐼)
2717, 19, 25, 26syl12anc 836 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → {𝑧 ∈ ran 𝐼𝑋𝑧} ∈ ran 𝐼)
284, 6diacnvclN 41096 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ {𝑧 ∈ ran 𝐼𝑋𝑧} ∈ ran 𝐼) → (𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧}) ∈ dom 𝐼)
2927, 28syldan 591 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → (𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧}) ∈ dom 𝐼)
30 eqid 2731 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
3130, 4, 6diadmclN 41082 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧}) ∈ dom 𝐼) → (𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧}) ∈ (Base‘𝐾))
3229, 31syldan 591 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → (𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧}) ∈ (Base‘𝐾))
3330, 3opoccl 39239 . . . . . . 7 ((𝐾 ∈ OP ∧ (𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧}) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘(𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧})) ∈ (Base‘𝐾))
3416, 32, 33syl2anc 584 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → ((oc‘𝐾)‘(𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧})) ∈ (Base‘𝐾))
3530, 4lhpbase 40043 . . . . . . . 8 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
3635ad2antlr 727 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → 𝑊 ∈ (Base‘𝐾))
3730, 3opoccl 39239 . . . . . . 7 ((𝐾 ∈ OP ∧ 𝑊 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾))
3816, 36, 37syl2anc 584 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾))
3930, 1latjcl 18345 . . . . . 6 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘(𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧})) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾)) → (((oc‘𝐾)‘(𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧}))(join‘𝐾)((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾))
4014, 34, 38, 39syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → (((oc‘𝐾)‘(𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧}))(join‘𝐾)((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾))
4130, 2latmcl 18346 . . . . 5 ((𝐾 ∈ Lat ∧ (((oc‘𝐾)‘(𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧}))(join‘𝐾)((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((((oc‘𝐾)‘(𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧}))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾))
4214, 40, 36, 41syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → ((((oc‘𝐾)‘(𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧}))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾))
43 eqid 2731 . . . . . 6 (le‘𝐾) = (le‘𝐾)
4430, 43, 2latmle2 18371 . . . . 5 ((𝐾 ∈ Lat ∧ (((oc‘𝐾)‘(𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧}))(join‘𝐾)((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((((oc‘𝐾)‘(𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧}))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊)
4514, 40, 36, 44syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → ((((oc‘𝐾)‘(𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧}))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊)
4630, 43, 4, 6diaeldm 41081 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((((oc‘𝐾)‘(𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧}))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼 ↔ (((((oc‘𝐾)‘(𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧}))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ ((((oc‘𝐾)‘(𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧}))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊)))
4746adantr 480 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → (((((oc‘𝐾)‘(𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧}))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼 ↔ (((((oc‘𝐾)‘(𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧}))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ ((((oc‘𝐾)‘(𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧}))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊)))
4842, 45, 47mpbir2and 713 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → ((((oc‘𝐾)‘(𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧}))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼)
49 fvelrn 7009 . . 3 ((Fun 𝐼 ∧ ((((oc‘𝐾)‘(𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧}))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼) → (𝐼‘((((oc‘𝐾)‘(𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧}))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) ∈ ran 𝐼)
5012, 48, 49syl2anc 584 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → (𝐼‘((((oc‘𝐾)‘(𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧}))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) ∈ ran 𝐼)
518, 50eqeltrd 2831 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → ( 𝑋) ∈ ran 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  {crab 3395  wss 3902  c0 4283   cint 4897   class class class wbr 5091  ccnv 5615  dom cdm 5616  ran crn 5617  Fun wfun 6475  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  Basecbs 17120  lecple 17168  occoc 17169  joincjn 18217  meetcmee 18218  Latclat 18337  OPcops 39217  HLchlt 39395  LHypclh 40029  LTrncltrn 40146  DIsoAcdia 41073  ocAcocaN 41164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-riotaBAD 38998
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-undef 8203  df-map 8752  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39221  df-ol 39223  df-oml 39224  df-covers 39311  df-ats 39312  df-atl 39343  df-cvlat 39367  df-hlat 39396  df-llines 39543  df-lplanes 39544  df-lvols 39545  df-lines 39546  df-psubsp 39548  df-pmap 39549  df-padd 39841  df-lhyp 40033  df-laut 40034  df-ldil 40149  df-ltrn 40150  df-trl 40204  df-disoa 41074  df-docaN 41165
This theorem is referenced by:  dvadiaN  41173  djaclN  41181
  Copyright terms: Public domain W3C validator