Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  docaclN Structured version   Visualization version   GIF version

Theorem docaclN 39587
Description: Closure of subspace orthocomplement for DVecA partial vector space. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
docacl.h 𝐻 = (LHyp‘𝐾)
docacl.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
docacl.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
docacl.n = ((ocA‘𝐾)‘𝑊)
Assertion
Ref Expression
docaclN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → ( 𝑋) ∈ ran 𝐼)

Proof of Theorem docaclN
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . 3 (join‘𝐾) = (join‘𝐾)
2 eqid 2736 . . 3 (meet‘𝐾) = (meet‘𝐾)
3 eqid 2736 . . 3 (oc‘𝐾) = (oc‘𝐾)
4 docacl.h . . 3 𝐻 = (LHyp‘𝐾)
5 docacl.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
6 docacl.i . . 3 𝐼 = ((DIsoA‘𝐾)‘𝑊)
7 docacl.n . . 3 = ((ocA‘𝐾)‘𝑊)
81, 2, 3, 4, 5, 6, 7docavalN 39586 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → ( 𝑋) = (𝐼‘((((oc‘𝐾)‘(𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧}))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)))
94, 6diaf11N 39512 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼:dom 𝐼1-1-onto→ran 𝐼)
10 f1ofun 6786 . . . . 5 (𝐼:dom 𝐼1-1-onto→ran 𝐼 → Fun 𝐼)
119, 10syl 17 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Fun 𝐼)
1211adantr 481 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → Fun 𝐼)
13 hllat 37825 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
1413ad2antrr 724 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → 𝐾 ∈ Lat)
15 hlop 37824 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ OP)
1615ad2antrr 724 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → 𝐾 ∈ OP)
17 simpl 483 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
18 ssrab2 4037 . . . . . . . . . . 11 {𝑧 ∈ ran 𝐼𝑋𝑧} ⊆ ran 𝐼
1918a1i 11 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → {𝑧 ∈ ran 𝐼𝑋𝑧} ⊆ ran 𝐼)
204, 5, 6dia1elN 39517 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑇 ∈ ran 𝐼)
2120anim1i 615 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → (𝑇 ∈ ran 𝐼𝑋𝑇))
22 sseq2 3970 . . . . . . . . . . . . 13 (𝑧 = 𝑇 → (𝑋𝑧𝑋𝑇))
2322elrab 3645 . . . . . . . . . . . 12 (𝑇 ∈ {𝑧 ∈ ran 𝐼𝑋𝑧} ↔ (𝑇 ∈ ran 𝐼𝑋𝑇))
2421, 23sylibr 233 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → 𝑇 ∈ {𝑧 ∈ ran 𝐼𝑋𝑧})
2524ne0d 4295 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → {𝑧 ∈ ran 𝐼𝑋𝑧} ≠ ∅)
264, 6diaintclN 39521 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ({𝑧 ∈ ran 𝐼𝑋𝑧} ⊆ ran 𝐼 ∧ {𝑧 ∈ ran 𝐼𝑋𝑧} ≠ ∅)) → {𝑧 ∈ ran 𝐼𝑋𝑧} ∈ ran 𝐼)
2717, 19, 25, 26syl12anc 835 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → {𝑧 ∈ ran 𝐼𝑋𝑧} ∈ ran 𝐼)
284, 6diacnvclN 39514 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ {𝑧 ∈ ran 𝐼𝑋𝑧} ∈ ran 𝐼) → (𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧}) ∈ dom 𝐼)
2927, 28syldan 591 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → (𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧}) ∈ dom 𝐼)
30 eqid 2736 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
3130, 4, 6diadmclN 39500 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧}) ∈ dom 𝐼) → (𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧}) ∈ (Base‘𝐾))
3229, 31syldan 591 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → (𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧}) ∈ (Base‘𝐾))
3330, 3opoccl 37656 . . . . . . 7 ((𝐾 ∈ OP ∧ (𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧}) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘(𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧})) ∈ (Base‘𝐾))
3416, 32, 33syl2anc 584 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → ((oc‘𝐾)‘(𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧})) ∈ (Base‘𝐾))
3530, 4lhpbase 38461 . . . . . . . 8 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
3635ad2antlr 725 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → 𝑊 ∈ (Base‘𝐾))
3730, 3opoccl 37656 . . . . . . 7 ((𝐾 ∈ OP ∧ 𝑊 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾))
3816, 36, 37syl2anc 584 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾))
3930, 1latjcl 18328 . . . . . 6 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘(𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧})) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾)) → (((oc‘𝐾)‘(𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧}))(join‘𝐾)((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾))
4014, 34, 38, 39syl3anc 1371 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → (((oc‘𝐾)‘(𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧}))(join‘𝐾)((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾))
4130, 2latmcl 18329 . . . . 5 ((𝐾 ∈ Lat ∧ (((oc‘𝐾)‘(𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧}))(join‘𝐾)((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((((oc‘𝐾)‘(𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧}))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾))
4214, 40, 36, 41syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → ((((oc‘𝐾)‘(𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧}))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾))
43 eqid 2736 . . . . . 6 (le‘𝐾) = (le‘𝐾)
4430, 43, 2latmle2 18354 . . . . 5 ((𝐾 ∈ Lat ∧ (((oc‘𝐾)‘(𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧}))(join‘𝐾)((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((((oc‘𝐾)‘(𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧}))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊)
4514, 40, 36, 44syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → ((((oc‘𝐾)‘(𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧}))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊)
4630, 43, 4, 6diaeldm 39499 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((((oc‘𝐾)‘(𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧}))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼 ↔ (((((oc‘𝐾)‘(𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧}))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ ((((oc‘𝐾)‘(𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧}))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊)))
4746adantr 481 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → (((((oc‘𝐾)‘(𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧}))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼 ↔ (((((oc‘𝐾)‘(𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧}))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ ((((oc‘𝐾)‘(𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧}))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊)))
4842, 45, 47mpbir2and 711 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → ((((oc‘𝐾)‘(𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧}))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼)
49 fvelrn 7027 . . 3 ((Fun 𝐼 ∧ ((((oc‘𝐾)‘(𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧}))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼) → (𝐼‘((((oc‘𝐾)‘(𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧}))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) ∈ ran 𝐼)
5012, 48, 49syl2anc 584 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → (𝐼‘((((oc‘𝐾)‘(𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧}))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) ∈ ran 𝐼)
518, 50eqeltrd 2838 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → ( 𝑋) ∈ ran 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943  {crab 3407  wss 3910  c0 4282   cint 4907   class class class wbr 5105  ccnv 5632  dom cdm 5633  ran crn 5634  Fun wfun 6490  1-1-ontowf1o 6495  cfv 6496  (class class class)co 7357  Basecbs 17083  lecple 17140  occoc 17141  joincjn 18200  meetcmee 18201  Latclat 18320  OPcops 37634  HLchlt 37812  LHypclh 38447  LTrncltrn 38564  DIsoAcdia 39491  ocAcocaN 39582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-riotaBAD 37415
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1st 7921  df-2nd 7922  df-undef 8204  df-map 8767  df-proset 18184  df-poset 18202  df-plt 18219  df-lub 18235  df-glb 18236  df-join 18237  df-meet 18238  df-p0 18314  df-p1 18315  df-lat 18321  df-clat 18388  df-oposet 37638  df-ol 37640  df-oml 37641  df-covers 37728  df-ats 37729  df-atl 37760  df-cvlat 37784  df-hlat 37813  df-llines 37961  df-lplanes 37962  df-lvols 37963  df-lines 37964  df-psubsp 37966  df-pmap 37967  df-padd 38259  df-lhyp 38451  df-laut 38452  df-ldil 38567  df-ltrn 38568  df-trl 38622  df-disoa 39492  df-docaN 39583
This theorem is referenced by:  dvadiaN  39591  djaclN  39599
  Copyright terms: Public domain W3C validator