| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | eqid 2736 | . . 3
⊢
(join‘𝐾) =
(join‘𝐾) | 
| 2 |  | eqid 2736 | . . 3
⊢
(meet‘𝐾) =
(meet‘𝐾) | 
| 3 |  | eqid 2736 | . . 3
⊢
(oc‘𝐾) =
(oc‘𝐾) | 
| 4 |  | docacl.h | . . 3
⊢ 𝐻 = (LHyp‘𝐾) | 
| 5 |  | docacl.t | . . 3
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | 
| 6 |  | docacl.i | . . 3
⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | 
| 7 |  | docacl.n | . . 3
⊢  ⊥ =
((ocA‘𝐾)‘𝑊) | 
| 8 | 1, 2, 3, 4, 5, 6, 7 | docavalN 41126 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑇) → ( ⊥ ‘𝑋) = (𝐼‘((((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))) | 
| 9 | 4, 6 | diaf11N 41052 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐼:dom 𝐼–1-1-onto→ran
𝐼) | 
| 10 |  | f1ofun 6849 | . . . . 5
⊢ (𝐼:dom 𝐼–1-1-onto→ran
𝐼 → Fun 𝐼) | 
| 11 | 9, 10 | syl 17 | . . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → Fun 𝐼) | 
| 12 | 11 | adantr 480 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑇) → Fun 𝐼) | 
| 13 |  | hllat 39365 | . . . . . 6
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | 
| 14 | 13 | ad2antrr 726 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑇) → 𝐾 ∈ Lat) | 
| 15 |  | hlop 39364 | . . . . . . . 8
⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | 
| 16 | 15 | ad2antrr 726 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑇) → 𝐾 ∈ OP) | 
| 17 |  | simpl 482 | . . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑇) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 18 |  | ssrab2 4079 | . . . . . . . . . . 11
⊢ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧} ⊆ ran 𝐼 | 
| 19 | 18 | a1i 11 | . . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑇) → {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧} ⊆ ran 𝐼) | 
| 20 | 4, 5, 6 | dia1elN 41057 | . . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑇 ∈ ran 𝐼) | 
| 21 | 20 | anim1i 615 | . . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑇) → (𝑇 ∈ ran 𝐼 ∧ 𝑋 ⊆ 𝑇)) | 
| 22 |  | sseq2 4009 | . . . . . . . . . . . . 13
⊢ (𝑧 = 𝑇 → (𝑋 ⊆ 𝑧 ↔ 𝑋 ⊆ 𝑇)) | 
| 23 | 22 | elrab 3691 | . . . . . . . . . . . 12
⊢ (𝑇 ∈ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧} ↔ (𝑇 ∈ ran 𝐼 ∧ 𝑋 ⊆ 𝑇)) | 
| 24 | 21, 23 | sylibr 234 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑇) → 𝑇 ∈ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}) | 
| 25 | 24 | ne0d 4341 | . . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑇) → {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧} ≠ ∅) | 
| 26 | 4, 6 | diaintclN 41061 | . . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ({𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧} ⊆ ran 𝐼 ∧ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧} ≠ ∅)) → ∩ {𝑧
∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧} ∈ ran 𝐼) | 
| 27 | 17, 19, 25, 26 | syl12anc 836 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑇) → ∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧} ∈ ran 𝐼) | 
| 28 | 4, 6 | diacnvclN 41054 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧} ∈ ran 𝐼) → (◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}) ∈ dom 𝐼) | 
| 29 | 27, 28 | syldan 591 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑇) → (◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}) ∈ dom 𝐼) | 
| 30 |  | eqid 2736 | . . . . . . . . 9
⊢
(Base‘𝐾) =
(Base‘𝐾) | 
| 31 | 30, 4, 6 | diadmclN 41040 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}) ∈ dom 𝐼) → (◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}) ∈ (Base‘𝐾)) | 
| 32 | 29, 31 | syldan 591 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑇) → (◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}) ∈ (Base‘𝐾)) | 
| 33 | 30, 3 | opoccl 39196 | . . . . . . 7
⊢ ((𝐾 ∈ OP ∧ (◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})) ∈ (Base‘𝐾)) | 
| 34 | 16, 32, 33 | syl2anc 584 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑇) → ((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})) ∈ (Base‘𝐾)) | 
| 35 | 30, 4 | lhpbase 40001 | . . . . . . . 8
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) | 
| 36 | 35 | ad2antlr 727 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑇) → 𝑊 ∈ (Base‘𝐾)) | 
| 37 | 30, 3 | opoccl 39196 | . . . . . . 7
⊢ ((𝐾 ∈ OP ∧ 𝑊 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾)) | 
| 38 | 16, 36, 37 | syl2anc 584 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑇) → ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾)) | 
| 39 | 30, 1 | latjcl 18485 | . . . . . 6
⊢ ((𝐾 ∈ Lat ∧
((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾)) → (((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}))(join‘𝐾)((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾)) | 
| 40 | 14, 34, 38, 39 | syl3anc 1372 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑇) → (((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}))(join‘𝐾)((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾)) | 
| 41 | 30, 2 | latmcl 18486 | . . . . 5
⊢ ((𝐾 ∈ Lat ∧
(((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}))(join‘𝐾)((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾)) | 
| 42 | 14, 40, 36, 41 | syl3anc 1372 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑇) → ((((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾)) | 
| 43 |  | eqid 2736 | . . . . . 6
⊢
(le‘𝐾) =
(le‘𝐾) | 
| 44 | 30, 43, 2 | latmle2 18511 | . . . . 5
⊢ ((𝐾 ∈ Lat ∧
(((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}))(join‘𝐾)((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊) | 
| 45 | 14, 40, 36, 44 | syl3anc 1372 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑇) → ((((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊) | 
| 46 | 30, 43, 4, 6 | diaeldm 41039 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (((((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼 ↔ (((((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ ((((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊))) | 
| 47 | 46 | adantr 480 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑇) → (((((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼 ↔ (((((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ ((((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊))) | 
| 48 | 42, 45, 47 | mpbir2and 713 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑇) → ((((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼) | 
| 49 |  | fvelrn 7095 | . . 3
⊢ ((Fun
𝐼 ∧ ((((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼) → (𝐼‘((((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) ∈ ran 𝐼) | 
| 50 | 12, 48, 49 | syl2anc 584 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑇) → (𝐼‘((((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) ∈ ran 𝐼) | 
| 51 | 8, 50 | eqeltrd 2840 | 1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑇) → ( ⊥ ‘𝑋) ∈ ran 𝐼) |