Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > diaf11N | Structured version Visualization version GIF version |
Description: The partial isomorphism A for a lattice 𝐾 is a one-to-one function. Part of Lemma M of [Crawley] p. 120 line 27. (Contributed by NM, 4-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dia1o.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dia1o.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
diaf11N | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐼:dom 𝐼–1-1-onto→ran 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | eqid 2738 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | dia1o.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | dia1o.i | . . . 4 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
5 | 1, 2, 3, 4 | diafn 38668 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐼 Fn {𝑥 ∈ (Base‘𝐾) ∣ 𝑥(le‘𝐾)𝑊}) |
6 | fnfun 6439 | . . . 4 ⊢ (𝐼 Fn {𝑥 ∈ (Base‘𝐾) ∣ 𝑥(le‘𝐾)𝑊} → Fun 𝐼) | |
7 | funfn 6370 | . . . 4 ⊢ (Fun 𝐼 ↔ 𝐼 Fn dom 𝐼) | |
8 | 6, 7 | sylib 221 | . . 3 ⊢ (𝐼 Fn {𝑥 ∈ (Base‘𝐾) ∣ 𝑥(le‘𝐾)𝑊} → 𝐼 Fn dom 𝐼) |
9 | 5, 8 | syl 17 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐼 Fn dom 𝐼) |
10 | eqidd 2739 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ran 𝐼 = ran 𝐼) | |
11 | 1, 2, 3, 4 | diaeldm 38670 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑥 ∈ dom 𝐼 ↔ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊))) |
12 | 1, 2, 3, 4 | diaeldm 38670 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑦 ∈ dom 𝐼 ↔ (𝑦 ∈ (Base‘𝐾) ∧ 𝑦(le‘𝐾)𝑊))) |
13 | 11, 12 | anbi12d 634 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ((𝑥 ∈ dom 𝐼 ∧ 𝑦 ∈ dom 𝐼) ↔ ((𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑦(le‘𝐾)𝑊)))) |
14 | 1, 2, 3, 4 | dia11N 38682 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑦(le‘𝐾)𝑊)) → ((𝐼‘𝑥) = (𝐼‘𝑦) ↔ 𝑥 = 𝑦)) |
15 | 14 | biimpd 232 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑦(le‘𝐾)𝑊)) → ((𝐼‘𝑥) = (𝐼‘𝑦) → 𝑥 = 𝑦)) |
16 | 15 | 3expib 1123 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (((𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑦(le‘𝐾)𝑊)) → ((𝐼‘𝑥) = (𝐼‘𝑦) → 𝑥 = 𝑦))) |
17 | 13, 16 | sylbid 243 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ((𝑥 ∈ dom 𝐼 ∧ 𝑦 ∈ dom 𝐼) → ((𝐼‘𝑥) = (𝐼‘𝑦) → 𝑥 = 𝑦))) |
18 | 17 | ralrimivv 3102 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∀𝑥 ∈ dom 𝐼∀𝑦 ∈ dom 𝐼((𝐼‘𝑥) = (𝐼‘𝑦) → 𝑥 = 𝑦)) |
19 | dff1o6 7044 | . 2 ⊢ (𝐼:dom 𝐼–1-1-onto→ran 𝐼 ↔ (𝐼 Fn dom 𝐼 ∧ ran 𝐼 = ran 𝐼 ∧ ∀𝑥 ∈ dom 𝐼∀𝑦 ∈ dom 𝐼((𝐼‘𝑥) = (𝐼‘𝑦) → 𝑥 = 𝑦))) | |
20 | 9, 10, 18, 19 | syl3anbrc 1344 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐼:dom 𝐼–1-1-onto→ran 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2113 ∀wral 3053 {crab 3057 class class class wbr 5031 dom cdm 5526 ran crn 5527 Fun wfun 6334 Fn wfn 6335 –1-1-onto→wf1o 6339 ‘cfv 6340 Basecbs 16587 lecple 16676 HLchlt 36984 LHypclh 37618 DIsoAcdia 38662 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-rep 5155 ax-sep 5168 ax-nul 5175 ax-pow 5233 ax-pr 5297 ax-un 7480 ax-riotaBAD 36587 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3683 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-nul 4213 df-if 4416 df-pw 4491 df-sn 4518 df-pr 4520 df-op 4524 df-uni 4798 df-iun 4884 df-iin 4885 df-br 5032 df-opab 5094 df-mpt 5112 df-id 5430 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7128 df-ov 7174 df-oprab 7175 df-mpo 7176 df-1st 7715 df-2nd 7716 df-undef 7969 df-map 8440 df-proset 17655 df-poset 17673 df-plt 17685 df-lub 17701 df-glb 17702 df-join 17703 df-meet 17704 df-p0 17766 df-p1 17767 df-lat 17773 df-clat 17835 df-oposet 36810 df-ol 36812 df-oml 36813 df-covers 36900 df-ats 36901 df-atl 36932 df-cvlat 36956 df-hlat 36985 df-llines 37132 df-lplanes 37133 df-lvols 37134 df-lines 37135 df-psubsp 37137 df-pmap 37138 df-padd 37430 df-lhyp 37622 df-laut 37623 df-ldil 37738 df-ltrn 37739 df-trl 37793 df-disoa 38663 |
This theorem is referenced by: diaclN 38684 diacnvclN 38685 dia1elN 38688 diainN 38691 diaintclN 38692 diasslssN 38693 docaclN 38758 diaocN 38759 doca3N 38761 diaf1oN 38764 |
Copyright terms: Public domain | W3C validator |