![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > diaf11N | Structured version Visualization version GIF version |
Description: The partial isomorphism A for a lattice πΎ is a one-to-one function. Part of Lemma M of [Crawley] p. 120 line 27. (Contributed by NM, 4-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dia1o.h | β’ π» = (LHypβπΎ) |
dia1o.i | β’ πΌ = ((DIsoAβπΎ)βπ) |
Ref | Expression |
---|---|
diaf11N | β’ ((πΎ β HL β§ π β π») β πΌ:dom πΌβ1-1-ontoβran πΌ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . . 4 β’ (BaseβπΎ) = (BaseβπΎ) | |
2 | eqid 2732 | . . . 4 β’ (leβπΎ) = (leβπΎ) | |
3 | dia1o.h | . . . 4 β’ π» = (LHypβπΎ) | |
4 | dia1o.i | . . . 4 β’ πΌ = ((DIsoAβπΎ)βπ) | |
5 | 1, 2, 3, 4 | diafn 39893 | . . 3 β’ ((πΎ β HL β§ π β π») β πΌ Fn {π₯ β (BaseβπΎ) β£ π₯(leβπΎ)π}) |
6 | fnfun 6646 | . . . 4 β’ (πΌ Fn {π₯ β (BaseβπΎ) β£ π₯(leβπΎ)π} β Fun πΌ) | |
7 | funfn 6575 | . . . 4 β’ (Fun πΌ β πΌ Fn dom πΌ) | |
8 | 6, 7 | sylib 217 | . . 3 β’ (πΌ Fn {π₯ β (BaseβπΎ) β£ π₯(leβπΎ)π} β πΌ Fn dom πΌ) |
9 | 5, 8 | syl 17 | . 2 β’ ((πΎ β HL β§ π β π») β πΌ Fn dom πΌ) |
10 | eqidd 2733 | . 2 β’ ((πΎ β HL β§ π β π») β ran πΌ = ran πΌ) | |
11 | 1, 2, 3, 4 | diaeldm 39895 | . . . . 5 β’ ((πΎ β HL β§ π β π») β (π₯ β dom πΌ β (π₯ β (BaseβπΎ) β§ π₯(leβπΎ)π))) |
12 | 1, 2, 3, 4 | diaeldm 39895 | . . . . 5 β’ ((πΎ β HL β§ π β π») β (π¦ β dom πΌ β (π¦ β (BaseβπΎ) β§ π¦(leβπΎ)π))) |
13 | 11, 12 | anbi12d 631 | . . . 4 β’ ((πΎ β HL β§ π β π») β ((π₯ β dom πΌ β§ π¦ β dom πΌ) β ((π₯ β (BaseβπΎ) β§ π₯(leβπΎ)π) β§ (π¦ β (BaseβπΎ) β§ π¦(leβπΎ)π)))) |
14 | 1, 2, 3, 4 | dia11N 39907 | . . . . . 6 β’ (((πΎ β HL β§ π β π») β§ (π₯ β (BaseβπΎ) β§ π₯(leβπΎ)π) β§ (π¦ β (BaseβπΎ) β§ π¦(leβπΎ)π)) β ((πΌβπ₯) = (πΌβπ¦) β π₯ = π¦)) |
15 | 14 | biimpd 228 | . . . . 5 β’ (((πΎ β HL β§ π β π») β§ (π₯ β (BaseβπΎ) β§ π₯(leβπΎ)π) β§ (π¦ β (BaseβπΎ) β§ π¦(leβπΎ)π)) β ((πΌβπ₯) = (πΌβπ¦) β π₯ = π¦)) |
16 | 15 | 3expib 1122 | . . . 4 β’ ((πΎ β HL β§ π β π») β (((π₯ β (BaseβπΎ) β§ π₯(leβπΎ)π) β§ (π¦ β (BaseβπΎ) β§ π¦(leβπΎ)π)) β ((πΌβπ₯) = (πΌβπ¦) β π₯ = π¦))) |
17 | 13, 16 | sylbid 239 | . . 3 β’ ((πΎ β HL β§ π β π») β ((π₯ β dom πΌ β§ π¦ β dom πΌ) β ((πΌβπ₯) = (πΌβπ¦) β π₯ = π¦))) |
18 | 17 | ralrimivv 3198 | . 2 β’ ((πΎ β HL β§ π β π») β βπ₯ β dom πΌβπ¦ β dom πΌ((πΌβπ₯) = (πΌβπ¦) β π₯ = π¦)) |
19 | dff1o6 7269 | . 2 β’ (πΌ:dom πΌβ1-1-ontoβran πΌ β (πΌ Fn dom πΌ β§ ran πΌ = ran πΌ β§ βπ₯ β dom πΌβπ¦ β dom πΌ((πΌβπ₯) = (πΌβπ¦) β π₯ = π¦))) | |
20 | 9, 10, 18, 19 | syl3anbrc 1343 | 1 β’ ((πΎ β HL β§ π β π») β πΌ:dom πΌβ1-1-ontoβran πΌ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 βwral 3061 {crab 3432 class class class wbr 5147 dom cdm 5675 ran crn 5676 Fun wfun 6534 Fn wfn 6535 β1-1-ontoβwf1o 6539 βcfv 6540 Basecbs 17140 lecple 17200 HLchlt 38208 LHypclh 38843 DIsoAcdia 39887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-riotaBAD 37811 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-undef 8254 df-map 8818 df-proset 18244 df-poset 18262 df-plt 18279 df-lub 18295 df-glb 18296 df-join 18297 df-meet 18298 df-p0 18374 df-p1 18375 df-lat 18381 df-clat 18448 df-oposet 38034 df-ol 38036 df-oml 38037 df-covers 38124 df-ats 38125 df-atl 38156 df-cvlat 38180 df-hlat 38209 df-llines 38357 df-lplanes 38358 df-lvols 38359 df-lines 38360 df-psubsp 38362 df-pmap 38363 df-padd 38655 df-lhyp 38847 df-laut 38848 df-ldil 38963 df-ltrn 38964 df-trl 39018 df-disoa 39888 |
This theorem is referenced by: diaclN 39909 diacnvclN 39910 dia1elN 39913 diainN 39916 diaintclN 39917 diasslssN 39918 docaclN 39983 diaocN 39984 doca3N 39986 diaf1oN 39989 |
Copyright terms: Public domain | W3C validator |