| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > diaf11N | Structured version Visualization version GIF version | ||
| Description: The partial isomorphism A for a lattice 𝐾 is a one-to-one function. Part of Lemma M of [Crawley] p. 120 line 27. (Contributed by NM, 4-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dia1o.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dia1o.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| diaf11N | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐼:dom 𝐼–1-1-onto→ran 𝐼) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 2 | eqid 2729 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 3 | dia1o.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | dia1o.i | . . . 4 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
| 5 | 1, 2, 3, 4 | diafn 41028 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐼 Fn {𝑥 ∈ (Base‘𝐾) ∣ 𝑥(le‘𝐾)𝑊}) |
| 6 | fnfun 6618 | . . . 4 ⊢ (𝐼 Fn {𝑥 ∈ (Base‘𝐾) ∣ 𝑥(le‘𝐾)𝑊} → Fun 𝐼) | |
| 7 | funfn 6546 | . . . 4 ⊢ (Fun 𝐼 ↔ 𝐼 Fn dom 𝐼) | |
| 8 | 6, 7 | sylib 218 | . . 3 ⊢ (𝐼 Fn {𝑥 ∈ (Base‘𝐾) ∣ 𝑥(le‘𝐾)𝑊} → 𝐼 Fn dom 𝐼) |
| 9 | 5, 8 | syl 17 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐼 Fn dom 𝐼) |
| 10 | eqidd 2730 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ran 𝐼 = ran 𝐼) | |
| 11 | 1, 2, 3, 4 | diaeldm 41030 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑥 ∈ dom 𝐼 ↔ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊))) |
| 12 | 1, 2, 3, 4 | diaeldm 41030 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑦 ∈ dom 𝐼 ↔ (𝑦 ∈ (Base‘𝐾) ∧ 𝑦(le‘𝐾)𝑊))) |
| 13 | 11, 12 | anbi12d 632 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ((𝑥 ∈ dom 𝐼 ∧ 𝑦 ∈ dom 𝐼) ↔ ((𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑦(le‘𝐾)𝑊)))) |
| 14 | 1, 2, 3, 4 | dia11N 41042 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑦(le‘𝐾)𝑊)) → ((𝐼‘𝑥) = (𝐼‘𝑦) ↔ 𝑥 = 𝑦)) |
| 15 | 14 | biimpd 229 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑦(le‘𝐾)𝑊)) → ((𝐼‘𝑥) = (𝐼‘𝑦) → 𝑥 = 𝑦)) |
| 16 | 15 | 3expib 1122 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (((𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑦(le‘𝐾)𝑊)) → ((𝐼‘𝑥) = (𝐼‘𝑦) → 𝑥 = 𝑦))) |
| 17 | 13, 16 | sylbid 240 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ((𝑥 ∈ dom 𝐼 ∧ 𝑦 ∈ dom 𝐼) → ((𝐼‘𝑥) = (𝐼‘𝑦) → 𝑥 = 𝑦))) |
| 18 | 17 | ralrimivv 3178 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∀𝑥 ∈ dom 𝐼∀𝑦 ∈ dom 𝐼((𝐼‘𝑥) = (𝐼‘𝑦) → 𝑥 = 𝑦)) |
| 19 | dff1o6 7250 | . 2 ⊢ (𝐼:dom 𝐼–1-1-onto→ran 𝐼 ↔ (𝐼 Fn dom 𝐼 ∧ ran 𝐼 = ran 𝐼 ∧ ∀𝑥 ∈ dom 𝐼∀𝑦 ∈ dom 𝐼((𝐼‘𝑥) = (𝐼‘𝑦) → 𝑥 = 𝑦))) | |
| 20 | 9, 10, 18, 19 | syl3anbrc 1344 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐼:dom 𝐼–1-1-onto→ran 𝐼) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3405 class class class wbr 5107 dom cdm 5638 ran crn 5639 Fun wfun 6505 Fn wfn 6506 –1-1-onto→wf1o 6510 ‘cfv 6511 Basecbs 17179 lecple 17227 HLchlt 39343 LHypclh 39978 DIsoAcdia 41022 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-riotaBAD 38946 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-undef 8252 df-map 8801 df-proset 18255 df-poset 18274 df-plt 18289 df-lub 18305 df-glb 18306 df-join 18307 df-meet 18308 df-p0 18384 df-p1 18385 df-lat 18391 df-clat 18458 df-oposet 39169 df-ol 39171 df-oml 39172 df-covers 39259 df-ats 39260 df-atl 39291 df-cvlat 39315 df-hlat 39344 df-llines 39492 df-lplanes 39493 df-lvols 39494 df-lines 39495 df-psubsp 39497 df-pmap 39498 df-padd 39790 df-lhyp 39982 df-laut 39983 df-ldil 40098 df-ltrn 40099 df-trl 40153 df-disoa 41023 |
| This theorem is referenced by: diaclN 41044 diacnvclN 41045 dia1elN 41048 diainN 41051 diaintclN 41052 diasslssN 41053 docaclN 41118 diaocN 41119 doca3N 41121 diaf1oN 41124 |
| Copyright terms: Public domain | W3C validator |