MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptrabex Structured version   Visualization version   GIF version

Theorem mptrabex 7101
Description: If the domain of a function given by maps-to notation is a class abstraction based on a set, the function is a set. (Contributed by AV, 16-Jul-2019.) (Revised by AV, 26-Mar-2021.)
Hypothesis
Ref Expression
mptrabex.1 𝐴 ∈ V
Assertion
Ref Expression
mptrabex (𝑥 ∈ {𝑦𝐴𝜑} ↦ 𝐵) ∈ V
Distinct variable groups:   𝑥,𝑦,𝐴   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem mptrabex
StepHypRef Expression
1 mptrabex.1 . . 3 𝐴 ∈ V
21rabex 5256 . 2 {𝑦𝐴𝜑} ∈ V
32mptex 7099 1 (𝑥 ∈ {𝑦𝐴𝜑} ↦ 𝐵) ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  {crab 3068  Vcvv 3432  cmpt 5157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441
This theorem is referenced by:  odzval  16492  pmtrfval  19058  dmdprd  19601  dprdval  19606  psrlidm  21172  psrass23l  21177  psrass23  21179  mplsubrg  21211  mplmonmul  21237  mplbas2  21243  fusgrfis  27697  wlksnwwlknvbij  28273  clwwlkvbij  28477  sitgval  32299  fwddifnval  34465  diafval  39045  dicfval  39189
  Copyright terms: Public domain W3C validator