|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > mptrabex | Structured version Visualization version GIF version | ||
| Description: If the domain of a function given by maps-to notation is a class abstraction based on a set, the function is a set. (Contributed by AV, 16-Jul-2019.) (Revised by AV, 26-Mar-2021.) | 
| Ref | Expression | 
|---|---|
| mptrabex.1 | ⊢ 𝐴 ∈ V | 
| Ref | Expression | 
|---|---|
| mptrabex | ⊢ (𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑} ↦ 𝐵) ∈ V | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mptrabex.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | 1 | rabex 5338 | . 2 ⊢ {𝑦 ∈ 𝐴 ∣ 𝜑} ∈ V | 
| 3 | 2 | mptex 7244 | 1 ⊢ (𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑} ↦ 𝐵) ∈ V | 
| Colors of variables: wff setvar class | 
| Syntax hints: ∈ wcel 2107 {crab 3435 Vcvv 3479 ↦ cmpt 5224 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 | 
| This theorem is referenced by: odzval 16830 pmtrfval 19469 dmdprd 20019 dprdval 20024 psrlidm 21983 psrass23l 21988 psrass23 21990 mplsubrg 22026 mplmonmul 22055 mplbas2 22061 fusgrfis 29348 wlksnwwlknvbij 29929 clwwlkvbij 30133 sitgval 34335 fwddifnval 36165 diafval 41034 dicfval 41178 | 
| Copyright terms: Public domain | W3C validator |