MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptrabex Structured version   Visualization version   GIF version

Theorem mptrabex 7262
Description: If the domain of a function given by maps-to notation is a class abstraction based on a set, the function is a set. (Contributed by AV, 16-Jul-2019.) (Revised by AV, 26-Mar-2021.)
Hypothesis
Ref Expression
mptrabex.1 𝐴 ∈ V
Assertion
Ref Expression
mptrabex (𝑥 ∈ {𝑦𝐴𝜑} ↦ 𝐵) ∈ V
Distinct variable groups:   𝑥,𝑦,𝐴   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem mptrabex
StepHypRef Expression
1 mptrabex.1 . . 3 𝐴 ∈ V
21rabex 5357 . 2 {𝑦𝐴𝜑} ∈ V
32mptex 7260 1 (𝑥 ∈ {𝑦𝐴𝜑} ↦ 𝐵) ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  {crab 3443  Vcvv 3488  cmpt 5249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581
This theorem is referenced by:  odzval  16838  pmtrfval  19492  dmdprd  20042  dprdval  20047  psrlidm  22005  psrass23l  22010  psrass23  22012  mplsubrg  22048  mplmonmul  22077  mplbas2  22083  fusgrfis  29365  wlksnwwlknvbij  29941  clwwlkvbij  30145  sitgval  34297  fwddifnval  36127  diafval  40988  dicfval  41132
  Copyright terms: Public domain W3C validator