| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mptrabex | Structured version Visualization version GIF version | ||
| Description: If the domain of a function given by maps-to notation is a class abstraction based on a set, the function is a set. (Contributed by AV, 16-Jul-2019.) (Revised by AV, 26-Mar-2021.) |
| Ref | Expression |
|---|---|
| mptrabex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| mptrabex | ⊢ (𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑} ↦ 𝐵) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptrabex.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | 1 | rabex 5297 | . 2 ⊢ {𝑦 ∈ 𝐴 ∣ 𝜑} ∈ V |
| 3 | 2 | mptex 7200 | 1 ⊢ (𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑} ↦ 𝐵) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 {crab 3408 Vcvv 3450 ↦ cmpt 5191 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 |
| This theorem is referenced by: odzval 16769 pmtrfval 19387 dmdprd 19937 dprdval 19942 psrlidm 21878 psrass23l 21883 psrass23 21885 mplsubrg 21921 mplmonmul 21950 mplbas2 21956 fusgrfis 29264 wlksnwwlknvbij 29845 clwwlkvbij 30049 sitgval 34330 fwddifnval 36158 diafval 41032 dicfval 41176 |
| Copyright terms: Public domain | W3C validator |