Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mptrabex | Structured version Visualization version GIF version |
Description: If the domain of a function given by maps-to notation is a class abstraction based on a set, the function is a set. (Contributed by AV, 16-Jul-2019.) (Revised by AV, 26-Mar-2021.) |
Ref | Expression |
---|---|
mptrabex.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
mptrabex | ⊢ (𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑} ↦ 𝐵) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptrabex.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | 1 | rabex 5251 | . 2 ⊢ {𝑦 ∈ 𝐴 ∣ 𝜑} ∈ V |
3 | 2 | mptex 7081 | 1 ⊢ (𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑} ↦ 𝐵) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 {crab 3067 Vcvv 3422 ↦ cmpt 5153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 |
This theorem is referenced by: odzval 16420 pmtrfval 18973 dmdprd 19516 dprdval 19521 psrlidm 21082 psrass23l 21087 psrass23 21089 mplsubrg 21121 mplmonmul 21147 mplbas2 21153 fusgrfis 27600 wlksnwwlknvbij 28174 clwwlkvbij 28378 sitgval 32199 fwddifnval 34392 diafval 38972 dicfval 39116 |
Copyright terms: Public domain | W3C validator |