![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mptrabex | Structured version Visualization version GIF version |
Description: If the domain of a function given by maps-to notation is a class abstraction based on a set, the function is a set. (Contributed by AV, 16-Jul-2019.) (Revised by AV, 26-Mar-2021.) |
Ref | Expression |
---|---|
mptrabex.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
mptrabex | ⊢ (𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑} ↦ 𝐵) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptrabex.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | 1 | rabex 4946 | . 2 ⊢ {𝑦 ∈ 𝐴 ∣ 𝜑} ∈ V |
3 | 2 | mptex 6629 | 1 ⊢ (𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑} ↦ 𝐵) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2145 {crab 3065 Vcvv 3351 ↦ cmpt 4863 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 |
This theorem is referenced by: odzval 15702 pmtrfval 18076 dmdprd 18604 dprdval 18609 psrlidm 19617 psrass23l 19622 psrass23 19624 mplsubrg 19654 mplmonmul 19678 mplbas2 19684 fusgrfis 26444 wlknwwlksnbij2OLD 27026 wlkwwlkbij2OLD 27033 wlksnwwlknvbij 27051 wlksnwwlknvbijOLD 27052 clwwlkvbij 27288 clwwlkvbijOLDOLD 27289 clwwlkvbijOLD 27290 sitgval 30731 fwddifnval 32604 diafval 36837 dicfval 36981 |
Copyright terms: Public domain | W3C validator |