MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptrabex Structured version   Visualization version   GIF version

Theorem mptrabex 6982
Description: If the domain of a function given by maps-to notation is a class abstraction based on a set, the function is a set. (Contributed by AV, 16-Jul-2019.) (Revised by AV, 26-Mar-2021.)
Hypothesis
Ref Expression
mptrabex.1 𝐴 ∈ V
Assertion
Ref Expression
mptrabex (𝑥 ∈ {𝑦𝐴𝜑} ↦ 𝐵) ∈ V
Distinct variable groups:   𝑥,𝑦,𝐴   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem mptrabex
StepHypRef Expression
1 mptrabex.1 . . 3 𝐴 ∈ V
21rabex 5227 . 2 {𝑦𝐴𝜑} ∈ V
32mptex 6980 1 (𝑥 ∈ {𝑦𝐴𝜑} ↦ 𝐵) ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2110  {crab 3142  Vcvv 3494  cmpt 5138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357
This theorem is referenced by:  odzval  16122  pmtrfval  18572  dmdprd  19114  dprdval  19119  psrlidm  20177  psrass23l  20182  psrass23  20184  mplsubrg  20214  mplmonmul  20239  mplbas2  20245  fusgrfis  27106  wlksnwwlknvbij  27681  clwwlkvbij  27886  sitgval  31585  fwddifnval  33619  diafval  38161  dicfval  38305
  Copyright terms: Public domain W3C validator