| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > diaval | Structured version Visualization version GIF version | ||
| Description: The partial isomorphism A for a lattice 𝐾. Definition of isomorphism map in [Crawley] p. 120 line 24. (Contributed by NM, 15-Oct-2013.) |
| Ref | Expression |
|---|---|
| diaval.b | ⊢ 𝐵 = (Base‘𝐾) |
| diaval.l | ⊢ ≤ = (le‘𝐾) |
| diaval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| diaval.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| diaval.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| diaval.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| diaval | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑋}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diaval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | diaval.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
| 3 | diaval.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | diaval.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 5 | diaval.r | . . . . 5 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
| 6 | diaval.i | . . . . 5 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
| 7 | 1, 2, 3, 4, 5, 6 | diafval 41203 | . . . 4 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 = (𝑥 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊} ↦ {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑥})) |
| 8 | 7 | adantr 480 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → 𝐼 = (𝑥 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊} ↦ {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑥})) |
| 9 | 8 | fveq1d 6833 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = ((𝑥 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊} ↦ {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑥})‘𝑋)) |
| 10 | simpr 484 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) | |
| 11 | breq1 5098 | . . . . 5 ⊢ (𝑦 = 𝑋 → (𝑦 ≤ 𝑊 ↔ 𝑋 ≤ 𝑊)) | |
| 12 | 11 | elrab 3643 | . . . 4 ⊢ (𝑋 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊} ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) |
| 13 | 10, 12 | sylibr 234 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → 𝑋 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊}) |
| 14 | breq2 5099 | . . . . 5 ⊢ (𝑥 = 𝑋 → ((𝑅‘𝑓) ≤ 𝑥 ↔ (𝑅‘𝑓) ≤ 𝑋)) | |
| 15 | 14 | rabbidv 3403 | . . . 4 ⊢ (𝑥 = 𝑋 → {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑥} = {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑋}) |
| 16 | eqid 2733 | . . . 4 ⊢ (𝑥 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊} ↦ {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑥}) = (𝑥 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊} ↦ {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑥}) | |
| 17 | 4 | fvexi 6845 | . . . . 5 ⊢ 𝑇 ∈ V |
| 18 | 17 | rabex 5281 | . . . 4 ⊢ {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑋} ∈ V |
| 19 | 15, 16, 18 | fvmpt 6938 | . . 3 ⊢ (𝑋 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊} → ((𝑥 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊} ↦ {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑥})‘𝑋) = {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑋}) |
| 20 | 13, 19 | syl 17 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → ((𝑥 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊} ↦ {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑥})‘𝑋) = {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑋}) |
| 21 | 9, 20 | eqtrd 2768 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑋}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {crab 3396 class class class wbr 5095 ↦ cmpt 5176 ‘cfv 6489 Basecbs 17127 lecple 17175 LHypclh 40156 LTrncltrn 40273 trLctrl 40330 DIsoAcdia 41200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-disoa 41201 |
| This theorem is referenced by: diaelval 41205 diass 41214 diaord 41219 dia0 41224 dia1N 41225 diassdvaN 41232 dia1dim 41233 cdlemm10N 41290 dibval3N 41318 dihwN 41461 |
| Copyright terms: Public domain | W3C validator |