Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diaval Structured version   Visualization version   GIF version

Theorem diaval 41014
Description: The partial isomorphism A for a lattice 𝐾. Definition of isomorphism map in [Crawley] p. 120 line 24. (Contributed by NM, 15-Oct-2013.)
Hypotheses
Ref Expression
diaval.b 𝐵 = (Base‘𝐾)
diaval.l = (le‘𝐾)
diaval.h 𝐻 = (LHyp‘𝐾)
diaval.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
diaval.r 𝑅 = ((trL‘𝐾)‘𝑊)
diaval.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
Assertion
Ref Expression
diaval (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) = {𝑓𝑇 ∣ (𝑅𝑓) 𝑋})
Distinct variable groups:   𝑓,𝐾   𝑇,𝑓   𝑓,𝑊   𝑓,𝑋
Allowed substitution hints:   𝐵(𝑓)   𝑅(𝑓)   𝐻(𝑓)   𝐼(𝑓)   (𝑓)   𝑉(𝑓)

Proof of Theorem diaval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 diaval.b . . . . 5 𝐵 = (Base‘𝐾)
2 diaval.l . . . . 5 = (le‘𝐾)
3 diaval.h . . . . 5 𝐻 = (LHyp‘𝐾)
4 diaval.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
5 diaval.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
6 diaval.i . . . . 5 𝐼 = ((DIsoA‘𝐾)‘𝑊)
71, 2, 3, 4, 5, 6diafval 41013 . . . 4 ((𝐾𝑉𝑊𝐻) → 𝐼 = (𝑥 ∈ {𝑦𝐵𝑦 𝑊} ↦ {𝑓𝑇 ∣ (𝑅𝑓) 𝑥}))
87adantr 480 . . 3 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → 𝐼 = (𝑥 ∈ {𝑦𝐵𝑦 𝑊} ↦ {𝑓𝑇 ∣ (𝑅𝑓) 𝑥}))
98fveq1d 6828 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) = ((𝑥 ∈ {𝑦𝐵𝑦 𝑊} ↦ {𝑓𝑇 ∣ (𝑅𝑓) 𝑥})‘𝑋))
10 simpr 484 . . . 4 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝑋𝐵𝑋 𝑊))
11 breq1 5098 . . . . 5 (𝑦 = 𝑋 → (𝑦 𝑊𝑋 𝑊))
1211elrab 3650 . . . 4 (𝑋 ∈ {𝑦𝐵𝑦 𝑊} ↔ (𝑋𝐵𝑋 𝑊))
1310, 12sylibr 234 . . 3 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → 𝑋 ∈ {𝑦𝐵𝑦 𝑊})
14 breq2 5099 . . . . 5 (𝑥 = 𝑋 → ((𝑅𝑓) 𝑥 ↔ (𝑅𝑓) 𝑋))
1514rabbidv 3404 . . . 4 (𝑥 = 𝑋 → {𝑓𝑇 ∣ (𝑅𝑓) 𝑥} = {𝑓𝑇 ∣ (𝑅𝑓) 𝑋})
16 eqid 2729 . . . 4 (𝑥 ∈ {𝑦𝐵𝑦 𝑊} ↦ {𝑓𝑇 ∣ (𝑅𝑓) 𝑥}) = (𝑥 ∈ {𝑦𝐵𝑦 𝑊} ↦ {𝑓𝑇 ∣ (𝑅𝑓) 𝑥})
174fvexi 6840 . . . . 5 𝑇 ∈ V
1817rabex 5281 . . . 4 {𝑓𝑇 ∣ (𝑅𝑓) 𝑋} ∈ V
1915, 16, 18fvmpt 6934 . . 3 (𝑋 ∈ {𝑦𝐵𝑦 𝑊} → ((𝑥 ∈ {𝑦𝐵𝑦 𝑊} ↦ {𝑓𝑇 ∣ (𝑅𝑓) 𝑥})‘𝑋) = {𝑓𝑇 ∣ (𝑅𝑓) 𝑋})
2013, 19syl 17 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → ((𝑥 ∈ {𝑦𝐵𝑦 𝑊} ↦ {𝑓𝑇 ∣ (𝑅𝑓) 𝑥})‘𝑋) = {𝑓𝑇 ∣ (𝑅𝑓) 𝑋})
219, 20eqtrd 2764 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) = {𝑓𝑇 ∣ (𝑅𝑓) 𝑋})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3396   class class class wbr 5095  cmpt 5176  cfv 6486  Basecbs 17138  lecple 17186  LHypclh 39966  LTrncltrn 40083  trLctrl 40140  DIsoAcdia 41010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-disoa 41011
This theorem is referenced by:  diaelval  41015  diass  41024  diaord  41029  dia0  41034  dia1N  41035  diassdvaN  41042  dia1dim  41043  cdlemm10N  41100  dibval3N  41128  dihwN  41271
  Copyright terms: Public domain W3C validator