Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diaval Structured version   Visualization version   GIF version

Theorem diaval 41026
Description: The partial isomorphism A for a lattice 𝐾. Definition of isomorphism map in [Crawley] p. 120 line 24. (Contributed by NM, 15-Oct-2013.)
Hypotheses
Ref Expression
diaval.b 𝐵 = (Base‘𝐾)
diaval.l = (le‘𝐾)
diaval.h 𝐻 = (LHyp‘𝐾)
diaval.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
diaval.r 𝑅 = ((trL‘𝐾)‘𝑊)
diaval.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
Assertion
Ref Expression
diaval (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) = {𝑓𝑇 ∣ (𝑅𝑓) 𝑋})
Distinct variable groups:   𝑓,𝐾   𝑇,𝑓   𝑓,𝑊   𝑓,𝑋
Allowed substitution hints:   𝐵(𝑓)   𝑅(𝑓)   𝐻(𝑓)   𝐼(𝑓)   (𝑓)   𝑉(𝑓)

Proof of Theorem diaval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 diaval.b . . . . 5 𝐵 = (Base‘𝐾)
2 diaval.l . . . . 5 = (le‘𝐾)
3 diaval.h . . . . 5 𝐻 = (LHyp‘𝐾)
4 diaval.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
5 diaval.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
6 diaval.i . . . . 5 𝐼 = ((DIsoA‘𝐾)‘𝑊)
71, 2, 3, 4, 5, 6diafval 41025 . . . 4 ((𝐾𝑉𝑊𝐻) → 𝐼 = (𝑥 ∈ {𝑦𝐵𝑦 𝑊} ↦ {𝑓𝑇 ∣ (𝑅𝑓) 𝑥}))
87adantr 480 . . 3 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → 𝐼 = (𝑥 ∈ {𝑦𝐵𝑦 𝑊} ↦ {𝑓𝑇 ∣ (𝑅𝑓) 𝑥}))
98fveq1d 6860 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) = ((𝑥 ∈ {𝑦𝐵𝑦 𝑊} ↦ {𝑓𝑇 ∣ (𝑅𝑓) 𝑥})‘𝑋))
10 simpr 484 . . . 4 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝑋𝐵𝑋 𝑊))
11 breq1 5110 . . . . 5 (𝑦 = 𝑋 → (𝑦 𝑊𝑋 𝑊))
1211elrab 3659 . . . 4 (𝑋 ∈ {𝑦𝐵𝑦 𝑊} ↔ (𝑋𝐵𝑋 𝑊))
1310, 12sylibr 234 . . 3 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → 𝑋 ∈ {𝑦𝐵𝑦 𝑊})
14 breq2 5111 . . . . 5 (𝑥 = 𝑋 → ((𝑅𝑓) 𝑥 ↔ (𝑅𝑓) 𝑋))
1514rabbidv 3413 . . . 4 (𝑥 = 𝑋 → {𝑓𝑇 ∣ (𝑅𝑓) 𝑥} = {𝑓𝑇 ∣ (𝑅𝑓) 𝑋})
16 eqid 2729 . . . 4 (𝑥 ∈ {𝑦𝐵𝑦 𝑊} ↦ {𝑓𝑇 ∣ (𝑅𝑓) 𝑥}) = (𝑥 ∈ {𝑦𝐵𝑦 𝑊} ↦ {𝑓𝑇 ∣ (𝑅𝑓) 𝑥})
174fvexi 6872 . . . . 5 𝑇 ∈ V
1817rabex 5294 . . . 4 {𝑓𝑇 ∣ (𝑅𝑓) 𝑋} ∈ V
1915, 16, 18fvmpt 6968 . . 3 (𝑋 ∈ {𝑦𝐵𝑦 𝑊} → ((𝑥 ∈ {𝑦𝐵𝑦 𝑊} ↦ {𝑓𝑇 ∣ (𝑅𝑓) 𝑥})‘𝑋) = {𝑓𝑇 ∣ (𝑅𝑓) 𝑋})
2013, 19syl 17 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → ((𝑥 ∈ {𝑦𝐵𝑦 𝑊} ↦ {𝑓𝑇 ∣ (𝑅𝑓) 𝑥})‘𝑋) = {𝑓𝑇 ∣ (𝑅𝑓) 𝑋})
219, 20eqtrd 2764 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) = {𝑓𝑇 ∣ (𝑅𝑓) 𝑋})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3405   class class class wbr 5107  cmpt 5188  cfv 6511  Basecbs 17179  lecple 17227  LHypclh 39978  LTrncltrn 40095  trLctrl 40152  DIsoAcdia 41022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-disoa 41023
This theorem is referenced by:  diaelval  41027  diass  41036  diaord  41041  dia0  41046  dia1N  41047  diassdvaN  41054  dia1dim  41055  cdlemm10N  41112  dibval3N  41140  dihwN  41283
  Copyright terms: Public domain W3C validator