Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > diaval | Structured version Visualization version GIF version |
Description: The partial isomorphism A for a lattice 𝐾. Definition of isomorphism map in [Crawley] p. 120 line 24. (Contributed by NM, 15-Oct-2013.) |
Ref | Expression |
---|---|
diaval.b | ⊢ 𝐵 = (Base‘𝐾) |
diaval.l | ⊢ ≤ = (le‘𝐾) |
diaval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
diaval.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
diaval.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
diaval.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
diaval | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑋}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | diaval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
2 | diaval.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
3 | diaval.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | diaval.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
5 | diaval.r | . . . . 5 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
6 | diaval.i | . . . . 5 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
7 | 1, 2, 3, 4, 5, 6 | diafval 38782 | . . . 4 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 = (𝑥 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊} ↦ {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑥})) |
8 | 7 | adantr 484 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → 𝐼 = (𝑥 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊} ↦ {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑥})) |
9 | 8 | fveq1d 6719 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = ((𝑥 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊} ↦ {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑥})‘𝑋)) |
10 | simpr 488 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) | |
11 | breq1 5056 | . . . . 5 ⊢ (𝑦 = 𝑋 → (𝑦 ≤ 𝑊 ↔ 𝑋 ≤ 𝑊)) | |
12 | 11 | elrab 3602 | . . . 4 ⊢ (𝑋 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊} ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) |
13 | 10, 12 | sylibr 237 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → 𝑋 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊}) |
14 | breq2 5057 | . . . . 5 ⊢ (𝑥 = 𝑋 → ((𝑅‘𝑓) ≤ 𝑥 ↔ (𝑅‘𝑓) ≤ 𝑋)) | |
15 | 14 | rabbidv 3390 | . . . 4 ⊢ (𝑥 = 𝑋 → {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑥} = {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑋}) |
16 | eqid 2737 | . . . 4 ⊢ (𝑥 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊} ↦ {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑥}) = (𝑥 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊} ↦ {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑥}) | |
17 | 4 | fvexi 6731 | . . . . 5 ⊢ 𝑇 ∈ V |
18 | 17 | rabex 5225 | . . . 4 ⊢ {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑋} ∈ V |
19 | 15, 16, 18 | fvmpt 6818 | . . 3 ⊢ (𝑋 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊} → ((𝑥 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊} ↦ {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑥})‘𝑋) = {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑋}) |
20 | 13, 19 | syl 17 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → ((𝑥 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊} ↦ {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑥})‘𝑋) = {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑋}) |
21 | 9, 20 | eqtrd 2777 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑋}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 {crab 3065 class class class wbr 5053 ↦ cmpt 5135 ‘cfv 6380 Basecbs 16760 lecple 16809 LHypclh 37735 LTrncltrn 37852 trLctrl 37909 DIsoAcdia 38779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-disoa 38780 |
This theorem is referenced by: diaelval 38784 diass 38793 diaord 38798 dia0 38803 dia1N 38804 diassdvaN 38811 dia1dim 38812 cdlemm10N 38869 dibval3N 38897 dihwN 39040 |
Copyright terms: Public domain | W3C validator |