Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > diaval | Structured version Visualization version GIF version |
Description: The partial isomorphism A for a lattice 𝐾. Definition of isomorphism map in [Crawley] p. 120 line 24. (Contributed by NM, 15-Oct-2013.) |
Ref | Expression |
---|---|
diaval.b | ⊢ 𝐵 = (Base‘𝐾) |
diaval.l | ⊢ ≤ = (le‘𝐾) |
diaval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
diaval.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
diaval.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
diaval.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
diaval | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑋}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | diaval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
2 | diaval.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
3 | diaval.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | diaval.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
5 | diaval.r | . . . . 5 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
6 | diaval.i | . . . . 5 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
7 | 1, 2, 3, 4, 5, 6 | diafval 38972 | . . . 4 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 = (𝑥 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊} ↦ {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑥})) |
8 | 7 | adantr 480 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → 𝐼 = (𝑥 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊} ↦ {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑥})) |
9 | 8 | fveq1d 6758 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = ((𝑥 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊} ↦ {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑥})‘𝑋)) |
10 | simpr 484 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) | |
11 | breq1 5073 | . . . . 5 ⊢ (𝑦 = 𝑋 → (𝑦 ≤ 𝑊 ↔ 𝑋 ≤ 𝑊)) | |
12 | 11 | elrab 3617 | . . . 4 ⊢ (𝑋 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊} ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) |
13 | 10, 12 | sylibr 233 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → 𝑋 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊}) |
14 | breq2 5074 | . . . . 5 ⊢ (𝑥 = 𝑋 → ((𝑅‘𝑓) ≤ 𝑥 ↔ (𝑅‘𝑓) ≤ 𝑋)) | |
15 | 14 | rabbidv 3404 | . . . 4 ⊢ (𝑥 = 𝑋 → {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑥} = {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑋}) |
16 | eqid 2738 | . . . 4 ⊢ (𝑥 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊} ↦ {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑥}) = (𝑥 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊} ↦ {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑥}) | |
17 | 4 | fvexi 6770 | . . . . 5 ⊢ 𝑇 ∈ V |
18 | 17 | rabex 5251 | . . . 4 ⊢ {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑋} ∈ V |
19 | 15, 16, 18 | fvmpt 6857 | . . 3 ⊢ (𝑋 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊} → ((𝑥 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊} ↦ {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑥})‘𝑋) = {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑋}) |
20 | 13, 19 | syl 17 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → ((𝑥 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊} ↦ {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑥})‘𝑋) = {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑋}) |
21 | 9, 20 | eqtrd 2778 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑋}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {crab 3067 class class class wbr 5070 ↦ cmpt 5153 ‘cfv 6418 Basecbs 16840 lecple 16895 LHypclh 37925 LTrncltrn 38042 trLctrl 38099 DIsoAcdia 38969 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-disoa 38970 |
This theorem is referenced by: diaelval 38974 diass 38983 diaord 38988 dia0 38993 dia1N 38994 diassdvaN 39001 dia1dim 39002 cdlemm10N 39059 dibval3N 39087 dihwN 39230 |
Copyright terms: Public domain | W3C validator |