![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > diaval | Structured version Visualization version GIF version |
Description: The partial isomorphism A for a lattice 𝐾. Definition of isomorphism map in [Crawley] p. 120 line 24. (Contributed by NM, 15-Oct-2013.) |
Ref | Expression |
---|---|
diaval.b | ⊢ 𝐵 = (Base‘𝐾) |
diaval.l | ⊢ ≤ = (le‘𝐾) |
diaval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
diaval.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
diaval.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
diaval.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
diaval | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑋}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | diaval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
2 | diaval.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
3 | diaval.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | diaval.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
5 | diaval.r | . . . . 5 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
6 | diaval.i | . . . . 5 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
7 | 1, 2, 3, 4, 5, 6 | diafval 37698 | . . . 4 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 = (𝑥 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊} ↦ {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑥})) |
8 | 7 | adantr 481 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → 𝐼 = (𝑥 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊} ↦ {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑥})) |
9 | 8 | fveq1d 6540 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = ((𝑥 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊} ↦ {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑥})‘𝑋)) |
10 | simpr 485 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) | |
11 | breq1 4965 | . . . . 5 ⊢ (𝑦 = 𝑋 → (𝑦 ≤ 𝑊 ↔ 𝑋 ≤ 𝑊)) | |
12 | 11 | elrab 3618 | . . . 4 ⊢ (𝑋 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊} ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) |
13 | 10, 12 | sylibr 235 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → 𝑋 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊}) |
14 | breq2 4966 | . . . . 5 ⊢ (𝑥 = 𝑋 → ((𝑅‘𝑓) ≤ 𝑥 ↔ (𝑅‘𝑓) ≤ 𝑋)) | |
15 | 14 | rabbidv 3425 | . . . 4 ⊢ (𝑥 = 𝑋 → {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑥} = {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑋}) |
16 | eqid 2795 | . . . 4 ⊢ (𝑥 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊} ↦ {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑥}) = (𝑥 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊} ↦ {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑥}) | |
17 | 4 | fvexi 6552 | . . . . 5 ⊢ 𝑇 ∈ V |
18 | 17 | rabex 5126 | . . . 4 ⊢ {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑋} ∈ V |
19 | 15, 16, 18 | fvmpt 6635 | . . 3 ⊢ (𝑋 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊} → ((𝑥 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊} ↦ {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑥})‘𝑋) = {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑋}) |
20 | 13, 19 | syl 17 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → ((𝑥 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊} ↦ {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑥})‘𝑋) = {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑋}) |
21 | 9, 20 | eqtrd 2831 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑋}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1522 ∈ wcel 2081 {crab 3109 class class class wbr 4962 ↦ cmpt 5041 ‘cfv 6225 Basecbs 16312 lecple 16401 LHypclh 36651 LTrncltrn 36768 trLctrl 36825 DIsoAcdia 37695 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5081 ax-sep 5094 ax-nul 5101 ax-pr 5221 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rex 3111 df-reu 3112 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-sn 4473 df-pr 4475 df-op 4479 df-uni 4746 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-id 5348 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-disoa 37696 |
This theorem is referenced by: diaelval 37700 diass 37709 diaord 37714 dia0 37719 dia1N 37720 diassdvaN 37727 dia1dim 37728 cdlemm10N 37785 dibval3N 37813 dihwN 37956 |
Copyright terms: Public domain | W3C validator |