| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > diaval | Structured version Visualization version GIF version | ||
| Description: The partial isomorphism A for a lattice 𝐾. Definition of isomorphism map in [Crawley] p. 120 line 24. (Contributed by NM, 15-Oct-2013.) |
| Ref | Expression |
|---|---|
| diaval.b | ⊢ 𝐵 = (Base‘𝐾) |
| diaval.l | ⊢ ≤ = (le‘𝐾) |
| diaval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| diaval.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| diaval.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| diaval.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| diaval | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑋}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diaval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | diaval.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
| 3 | diaval.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | diaval.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 5 | diaval.r | . . . . 5 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
| 6 | diaval.i | . . . . 5 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
| 7 | 1, 2, 3, 4, 5, 6 | diafval 41025 | . . . 4 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 = (𝑥 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊} ↦ {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑥})) |
| 8 | 7 | adantr 480 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → 𝐼 = (𝑥 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊} ↦ {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑥})) |
| 9 | 8 | fveq1d 6860 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = ((𝑥 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊} ↦ {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑥})‘𝑋)) |
| 10 | simpr 484 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) | |
| 11 | breq1 5110 | . . . . 5 ⊢ (𝑦 = 𝑋 → (𝑦 ≤ 𝑊 ↔ 𝑋 ≤ 𝑊)) | |
| 12 | 11 | elrab 3659 | . . . 4 ⊢ (𝑋 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊} ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) |
| 13 | 10, 12 | sylibr 234 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → 𝑋 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊}) |
| 14 | breq2 5111 | . . . . 5 ⊢ (𝑥 = 𝑋 → ((𝑅‘𝑓) ≤ 𝑥 ↔ (𝑅‘𝑓) ≤ 𝑋)) | |
| 15 | 14 | rabbidv 3413 | . . . 4 ⊢ (𝑥 = 𝑋 → {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑥} = {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑋}) |
| 16 | eqid 2729 | . . . 4 ⊢ (𝑥 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊} ↦ {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑥}) = (𝑥 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊} ↦ {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑥}) | |
| 17 | 4 | fvexi 6872 | . . . . 5 ⊢ 𝑇 ∈ V |
| 18 | 17 | rabex 5294 | . . . 4 ⊢ {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑋} ∈ V |
| 19 | 15, 16, 18 | fvmpt 6968 | . . 3 ⊢ (𝑋 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊} → ((𝑥 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊} ↦ {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑥})‘𝑋) = {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑋}) |
| 20 | 13, 19 | syl 17 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → ((𝑥 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊} ↦ {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑥})‘𝑋) = {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑋}) |
| 21 | 9, 20 | eqtrd 2764 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑋}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3405 class class class wbr 5107 ↦ cmpt 5188 ‘cfv 6511 Basecbs 17179 lecple 17227 LHypclh 39978 LTrncltrn 40095 trLctrl 40152 DIsoAcdia 41022 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-disoa 41023 |
| This theorem is referenced by: diaelval 41027 diass 41036 diaord 41041 dia0 41046 dia1N 41047 diassdvaN 41054 dia1dim 41055 cdlemm10N 41112 dibval3N 41140 dihwN 41283 |
| Copyright terms: Public domain | W3C validator |