![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dibdiadm | Structured version Visualization version GIF version |
Description: Domain of the partial isomorphism B. (Contributed by NM, 17-Jan-2014.) |
Ref | Expression |
---|---|
dibfna.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dibfna.j | ⊢ 𝐽 = ((DIsoA‘𝐾)‘𝑊) |
dibfna.i | ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
dibdiadm | ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → dom 𝐼 = dom 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dibfna.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | dibfna.j | . . 3 ⊢ 𝐽 = ((DIsoA‘𝐾)‘𝑊) | |
3 | dibfna.i | . . 3 ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) | |
4 | 1, 2, 3 | dibfna 37732 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 Fn dom 𝐽) |
5 | fndm 6288 | . 2 ⊢ (𝐼 Fn dom 𝐽 → dom 𝐼 = dom 𝐽) | |
6 | 4, 5 | syl 17 | 1 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → dom 𝐼 = dom 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2050 dom cdm 5407 Fn wfn 6183 ‘cfv 6188 LHypclh 36562 DIsoAcdia 37606 DIsoBcdib 37716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ne 2969 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3418 df-sbc 3683 df-csb 3788 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-nul 4180 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-id 5312 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-dib 37717 |
This theorem is referenced by: dibeldmN 37736 dibvalrel 37741 |
Copyright terms: Public domain | W3C validator |