| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dibfna | Structured version Visualization version GIF version | ||
| Description: Functionality and domain of the partial isomorphism B. (Contributed by NM, 17-Jan-2014.) |
| Ref | Expression |
|---|---|
| dibfna.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dibfna.j | ⊢ 𝐽 = ((DIsoA‘𝐾)‘𝑊) |
| dibfna.i | ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| dibfna | ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 Fn dom 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6871 | . . . 4 ⊢ (𝐽‘𝑦) ∈ V | |
| 2 | snex 5391 | . . . 4 ⊢ {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))} ∈ V | |
| 3 | 1, 2 | xpex 7729 | . . 3 ⊢ ((𝐽‘𝑦) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))}) ∈ V |
| 4 | eqid 2729 | . . 3 ⊢ (𝑦 ∈ dom 𝐽 ↦ ((𝐽‘𝑦) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))})) = (𝑦 ∈ dom 𝐽 ↦ ((𝐽‘𝑦) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))})) | |
| 5 | 3, 4 | fnmpti 6661 | . 2 ⊢ (𝑦 ∈ dom 𝐽 ↦ ((𝐽‘𝑦) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))})) Fn dom 𝐽 |
| 6 | eqid 2729 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 7 | dibfna.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 8 | eqid 2729 | . . . 4 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
| 9 | eqid 2729 | . . . 4 ⊢ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) | |
| 10 | dibfna.j | . . . 4 ⊢ 𝐽 = ((DIsoA‘𝐾)‘𝑊) | |
| 11 | dibfna.i | . . . 4 ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) | |
| 12 | 6, 7, 8, 9, 10, 11 | dibfval 41135 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 = (𝑦 ∈ dom 𝐽 ↦ ((𝐽‘𝑦) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))}))) |
| 13 | 12 | fneq1d 6611 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝐼 Fn dom 𝐽 ↔ (𝑦 ∈ dom 𝐽 ↦ ((𝐽‘𝑦) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))})) Fn dom 𝐽)) |
| 14 | 5, 13 | mpbiri 258 | 1 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 Fn dom 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4589 ↦ cmpt 5188 I cid 5532 × cxp 5636 dom cdm 5638 ↾ cres 5640 Fn wfn 6506 ‘cfv 6511 Basecbs 17179 LHypclh 39978 LTrncltrn 40095 DIsoAcdia 41022 DIsoBcdib 41132 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-dib 41133 |
| This theorem is referenced by: dibdiadm 41149 dibfnN 41150 dibclN 41156 |
| Copyright terms: Public domain | W3C validator |