| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dibfna | Structured version Visualization version GIF version | ||
| Description: Functionality and domain of the partial isomorphism B. (Contributed by NM, 17-Jan-2014.) |
| Ref | Expression |
|---|---|
| dibfna.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dibfna.j | ⊢ 𝐽 = ((DIsoA‘𝐾)‘𝑊) |
| dibfna.i | ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| dibfna | ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 Fn dom 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6889 | . . . 4 ⊢ (𝐽‘𝑦) ∈ V | |
| 2 | snex 5406 | . . . 4 ⊢ {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))} ∈ V | |
| 3 | 1, 2 | xpex 7747 | . . 3 ⊢ ((𝐽‘𝑦) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))}) ∈ V |
| 4 | eqid 2735 | . . 3 ⊢ (𝑦 ∈ dom 𝐽 ↦ ((𝐽‘𝑦) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))})) = (𝑦 ∈ dom 𝐽 ↦ ((𝐽‘𝑦) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))})) | |
| 5 | 3, 4 | fnmpti 6681 | . 2 ⊢ (𝑦 ∈ dom 𝐽 ↦ ((𝐽‘𝑦) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))})) Fn dom 𝐽 |
| 6 | eqid 2735 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 7 | dibfna.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 8 | eqid 2735 | . . . 4 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
| 9 | eqid 2735 | . . . 4 ⊢ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) | |
| 10 | dibfna.j | . . . 4 ⊢ 𝐽 = ((DIsoA‘𝐾)‘𝑊) | |
| 11 | dibfna.i | . . . 4 ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) | |
| 12 | 6, 7, 8, 9, 10, 11 | dibfval 41160 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 = (𝑦 ∈ dom 𝐽 ↦ ((𝐽‘𝑦) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))}))) |
| 13 | 12 | fneq1d 6631 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝐼 Fn dom 𝐽 ↔ (𝑦 ∈ dom 𝐽 ↦ ((𝐽‘𝑦) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))})) Fn dom 𝐽)) |
| 14 | 5, 13 | mpbiri 258 | 1 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 Fn dom 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {csn 4601 ↦ cmpt 5201 I cid 5547 × cxp 5652 dom cdm 5654 ↾ cres 5656 Fn wfn 6526 ‘cfv 6531 Basecbs 17228 LHypclh 40003 LTrncltrn 40120 DIsoAcdia 41047 DIsoBcdib 41157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-dib 41158 |
| This theorem is referenced by: dibdiadm 41174 dibfnN 41175 dibclN 41181 |
| Copyright terms: Public domain | W3C validator |