Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibfna Structured version   Visualization version   GIF version

Theorem dibfna 41111
Description: Functionality and domain of the partial isomorphism B. (Contributed by NM, 17-Jan-2014.)
Hypotheses
Ref Expression
dibfna.h 𝐻 = (LHyp‘𝐾)
dibfna.j 𝐽 = ((DIsoA‘𝐾)‘𝑊)
dibfna.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dibfna ((𝐾𝑉𝑊𝐻) → 𝐼 Fn dom 𝐽)

Proof of Theorem dibfna
Dummy variables 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6933 . . . 4 (𝐽𝑦) ∈ V
2 snex 5451 . . . 4 {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))} ∈ V
31, 2xpex 7788 . . 3 ((𝐽𝑦) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))}) ∈ V
4 eqid 2740 . . 3 (𝑦 ∈ dom 𝐽 ↦ ((𝐽𝑦) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))})) = (𝑦 ∈ dom 𝐽 ↦ ((𝐽𝑦) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))}))
53, 4fnmpti 6723 . 2 (𝑦 ∈ dom 𝐽 ↦ ((𝐽𝑦) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))})) Fn dom 𝐽
6 eqid 2740 . . . 4 (Base‘𝐾) = (Base‘𝐾)
7 dibfna.h . . . 4 𝐻 = (LHyp‘𝐾)
8 eqid 2740 . . . 4 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
9 eqid 2740 . . . 4 (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))
10 dibfna.j . . . 4 𝐽 = ((DIsoA‘𝐾)‘𝑊)
11 dibfna.i . . . 4 𝐼 = ((DIsoB‘𝐾)‘𝑊)
126, 7, 8, 9, 10, 11dibfval 41098 . . 3 ((𝐾𝑉𝑊𝐻) → 𝐼 = (𝑦 ∈ dom 𝐽 ↦ ((𝐽𝑦) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))})))
1312fneq1d 6672 . 2 ((𝐾𝑉𝑊𝐻) → (𝐼 Fn dom 𝐽 ↔ (𝑦 ∈ dom 𝐽 ↦ ((𝐽𝑦) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))})) Fn dom 𝐽))
145, 13mpbiri 258 1 ((𝐾𝑉𝑊𝐻) → 𝐼 Fn dom 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {csn 4648  cmpt 5249   I cid 5592   × cxp 5698  dom cdm 5700  cres 5702   Fn wfn 6568  cfv 6573  Basecbs 17258  LHypclh 39941  LTrncltrn 40058  DIsoAcdia 40985  DIsoBcdib 41095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-dib 41096
This theorem is referenced by:  dibdiadm  41112  dibfnN  41113  dibclN  41119
  Copyright terms: Public domain W3C validator