Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibfna Structured version   Visualization version   GIF version

Theorem dibfna 39380
Description: Functionality and domain of the partial isomorphism B. (Contributed by NM, 17-Jan-2014.)
Hypotheses
Ref Expression
dibfna.h 𝐻 = (LHyp‘𝐾)
dibfna.j 𝐽 = ((DIsoA‘𝐾)‘𝑊)
dibfna.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dibfna ((𝐾𝑉𝑊𝐻) → 𝐼 Fn dom 𝐽)

Proof of Theorem dibfna
Dummy variables 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6822 . . . 4 (𝐽𝑦) ∈ V
2 snex 5367 . . . 4 {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))} ∈ V
31, 2xpex 7641 . . 3 ((𝐽𝑦) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))}) ∈ V
4 eqid 2737 . . 3 (𝑦 ∈ dom 𝐽 ↦ ((𝐽𝑦) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))})) = (𝑦 ∈ dom 𝐽 ↦ ((𝐽𝑦) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))}))
53, 4fnmpti 6611 . 2 (𝑦 ∈ dom 𝐽 ↦ ((𝐽𝑦) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))})) Fn dom 𝐽
6 eqid 2737 . . . 4 (Base‘𝐾) = (Base‘𝐾)
7 dibfna.h . . . 4 𝐻 = (LHyp‘𝐾)
8 eqid 2737 . . . 4 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
9 eqid 2737 . . . 4 (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))
10 dibfna.j . . . 4 𝐽 = ((DIsoA‘𝐾)‘𝑊)
11 dibfna.i . . . 4 𝐼 = ((DIsoB‘𝐾)‘𝑊)
126, 7, 8, 9, 10, 11dibfval 39367 . . 3 ((𝐾𝑉𝑊𝐻) → 𝐼 = (𝑦 ∈ dom 𝐽 ↦ ((𝐽𝑦) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))})))
1312fneq1d 6562 . 2 ((𝐾𝑉𝑊𝐻) → (𝐼 Fn dom 𝐽 ↔ (𝑦 ∈ dom 𝐽 ↦ ((𝐽𝑦) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))})) Fn dom 𝐽))
145, 13mpbiri 257 1 ((𝐾𝑉𝑊𝐻) → 𝐼 Fn dom 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  {csn 4569  cmpt 5168   I cid 5504   × cxp 5603  dom cdm 5605  cres 5607   Fn wfn 6458  cfv 6463  Basecbs 16979  LHypclh 38210  LTrncltrn 38327  DIsoAcdia 39254  DIsoBcdib 39364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5222  ax-sep 5236  ax-nul 5243  ax-pow 5301  ax-pr 5365  ax-un 7626
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4470  df-pw 4545  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4849  df-iun 4937  df-br 5086  df-opab 5148  df-mpt 5169  df-id 5505  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-f1 6468  df-fo 6469  df-f1o 6470  df-fv 6471  df-dib 39365
This theorem is referenced by:  dibdiadm  39381  dibfnN  39382  dibclN  39388
  Copyright terms: Public domain W3C validator