![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dibfna | Structured version Visualization version GIF version |
Description: Functionality and domain of the partial isomorphism B. (Contributed by NM, 17-Jan-2014.) |
Ref | Expression |
---|---|
dibfna.h | β’ π» = (LHypβπΎ) |
dibfna.j | β’ π½ = ((DIsoAβπΎ)βπ) |
dibfna.i | β’ πΌ = ((DIsoBβπΎ)βπ) |
Ref | Expression |
---|---|
dibfna | β’ ((πΎ β π β§ π β π») β πΌ Fn dom π½) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6905 | . . . 4 β’ (π½βπ¦) β V | |
2 | snex 5432 | . . . 4 β’ {(π β ((LTrnβπΎ)βπ) β¦ ( I βΎ (BaseβπΎ)))} β V | |
3 | 1, 2 | xpex 7744 | . . 3 β’ ((π½βπ¦) Γ {(π β ((LTrnβπΎ)βπ) β¦ ( I βΎ (BaseβπΎ)))}) β V |
4 | eqid 2730 | . . 3 β’ (π¦ β dom π½ β¦ ((π½βπ¦) Γ {(π β ((LTrnβπΎ)βπ) β¦ ( I βΎ (BaseβπΎ)))})) = (π¦ β dom π½ β¦ ((π½βπ¦) Γ {(π β ((LTrnβπΎ)βπ) β¦ ( I βΎ (BaseβπΎ)))})) | |
5 | 3, 4 | fnmpti 6694 | . 2 β’ (π¦ β dom π½ β¦ ((π½βπ¦) Γ {(π β ((LTrnβπΎ)βπ) β¦ ( I βΎ (BaseβπΎ)))})) Fn dom π½ |
6 | eqid 2730 | . . . 4 β’ (BaseβπΎ) = (BaseβπΎ) | |
7 | dibfna.h | . . . 4 β’ π» = (LHypβπΎ) | |
8 | eqid 2730 | . . . 4 β’ ((LTrnβπΎ)βπ) = ((LTrnβπΎ)βπ) | |
9 | eqid 2730 | . . . 4 β’ (π β ((LTrnβπΎ)βπ) β¦ ( I βΎ (BaseβπΎ))) = (π β ((LTrnβπΎ)βπ) β¦ ( I βΎ (BaseβπΎ))) | |
10 | dibfna.j | . . . 4 β’ π½ = ((DIsoAβπΎ)βπ) | |
11 | dibfna.i | . . . 4 β’ πΌ = ((DIsoBβπΎ)βπ) | |
12 | 6, 7, 8, 9, 10, 11 | dibfval 40317 | . . 3 β’ ((πΎ β π β§ π β π») β πΌ = (π¦ β dom π½ β¦ ((π½βπ¦) Γ {(π β ((LTrnβπΎ)βπ) β¦ ( I βΎ (BaseβπΎ)))}))) |
13 | 12 | fneq1d 6643 | . 2 β’ ((πΎ β π β§ π β π») β (πΌ Fn dom π½ β (π¦ β dom π½ β¦ ((π½βπ¦) Γ {(π β ((LTrnβπΎ)βπ) β¦ ( I βΎ (BaseβπΎ)))})) Fn dom π½)) |
14 | 5, 13 | mpbiri 257 | 1 β’ ((πΎ β π β§ π β π») β πΌ Fn dom π½) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1539 β wcel 2104 {csn 4629 β¦ cmpt 5232 I cid 5574 Γ cxp 5675 dom cdm 5677 βΎ cres 5679 Fn wfn 6539 βcfv 6544 Basecbs 17150 LHypclh 39160 LTrncltrn 39277 DIsoAcdia 40204 DIsoBcdib 40314 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-dib 40315 |
This theorem is referenced by: dibdiadm 40331 dibfnN 40332 dibclN 40338 |
Copyright terms: Public domain | W3C validator |