| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dibfna | Structured version Visualization version GIF version | ||
| Description: Functionality and domain of the partial isomorphism B. (Contributed by NM, 17-Jan-2014.) |
| Ref | Expression |
|---|---|
| dibfna.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dibfna.j | ⊢ 𝐽 = ((DIsoA‘𝐾)‘𝑊) |
| dibfna.i | ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| dibfna | ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 Fn dom 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6830 | . . . 4 ⊢ (𝐽‘𝑦) ∈ V | |
| 2 | snex 5369 | . . . 4 ⊢ {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))} ∈ V | |
| 3 | 1, 2 | xpex 7681 | . . 3 ⊢ ((𝐽‘𝑦) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))}) ∈ V |
| 4 | eqid 2731 | . . 3 ⊢ (𝑦 ∈ dom 𝐽 ↦ ((𝐽‘𝑦) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))})) = (𝑦 ∈ dom 𝐽 ↦ ((𝐽‘𝑦) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))})) | |
| 5 | 3, 4 | fnmpti 6619 | . 2 ⊢ (𝑦 ∈ dom 𝐽 ↦ ((𝐽‘𝑦) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))})) Fn dom 𝐽 |
| 6 | eqid 2731 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 7 | dibfna.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 8 | eqid 2731 | . . . 4 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
| 9 | eqid 2731 | . . . 4 ⊢ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) | |
| 10 | dibfna.j | . . . 4 ⊢ 𝐽 = ((DIsoA‘𝐾)‘𝑊) | |
| 11 | dibfna.i | . . . 4 ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) | |
| 12 | 6, 7, 8, 9, 10, 11 | dibfval 41180 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 = (𝑦 ∈ dom 𝐽 ↦ ((𝐽‘𝑦) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))}))) |
| 13 | 12 | fneq1d 6569 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝐼 Fn dom 𝐽 ↔ (𝑦 ∈ dom 𝐽 ↦ ((𝐽‘𝑦) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))})) Fn dom 𝐽)) |
| 14 | 5, 13 | mpbiri 258 | 1 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 Fn dom 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {csn 4571 ↦ cmpt 5167 I cid 5505 × cxp 5609 dom cdm 5611 ↾ cres 5613 Fn wfn 6471 ‘cfv 6476 Basecbs 17115 LHypclh 40023 LTrncltrn 40140 DIsoAcdia 41067 DIsoBcdib 41177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-dib 41178 |
| This theorem is referenced by: dibdiadm 41194 dibfnN 41195 dibclN 41201 |
| Copyright terms: Public domain | W3C validator |