Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibfna Structured version   Visualization version   GIF version

Theorem dibfna 40330
Description: Functionality and domain of the partial isomorphism B. (Contributed by NM, 17-Jan-2014.)
Hypotheses
Ref Expression
dibfna.h 𝐻 = (LHypβ€˜πΎ)
dibfna.j 𝐽 = ((DIsoAβ€˜πΎ)β€˜π‘Š)
dibfna.i 𝐼 = ((DIsoBβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
dibfna ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ 𝐼 Fn dom 𝐽)

Proof of Theorem dibfna
Dummy variables 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6905 . . . 4 (π½β€˜π‘¦) ∈ V
2 snex 5432 . . . 4 {(𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ( I β†Ύ (Baseβ€˜πΎ)))} ∈ V
31, 2xpex 7744 . . 3 ((π½β€˜π‘¦) Γ— {(𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ( I β†Ύ (Baseβ€˜πΎ)))}) ∈ V
4 eqid 2730 . . 3 (𝑦 ∈ dom 𝐽 ↦ ((π½β€˜π‘¦) Γ— {(𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ( I β†Ύ (Baseβ€˜πΎ)))})) = (𝑦 ∈ dom 𝐽 ↦ ((π½β€˜π‘¦) Γ— {(𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ( I β†Ύ (Baseβ€˜πΎ)))}))
53, 4fnmpti 6694 . 2 (𝑦 ∈ dom 𝐽 ↦ ((π½β€˜π‘¦) Γ— {(𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ( I β†Ύ (Baseβ€˜πΎ)))})) Fn dom 𝐽
6 eqid 2730 . . . 4 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
7 dibfna.h . . . 4 𝐻 = (LHypβ€˜πΎ)
8 eqid 2730 . . . 4 ((LTrnβ€˜πΎ)β€˜π‘Š) = ((LTrnβ€˜πΎ)β€˜π‘Š)
9 eqid 2730 . . . 4 (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ( I β†Ύ (Baseβ€˜πΎ))) = (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ( I β†Ύ (Baseβ€˜πΎ)))
10 dibfna.j . . . 4 𝐽 = ((DIsoAβ€˜πΎ)β€˜π‘Š)
11 dibfna.i . . . 4 𝐼 = ((DIsoBβ€˜πΎ)β€˜π‘Š)
126, 7, 8, 9, 10, 11dibfval 40317 . . 3 ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ 𝐼 = (𝑦 ∈ dom 𝐽 ↦ ((π½β€˜π‘¦) Γ— {(𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ( I β†Ύ (Baseβ€˜πΎ)))})))
1312fneq1d 6643 . 2 ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ (𝐼 Fn dom 𝐽 ↔ (𝑦 ∈ dom 𝐽 ↦ ((π½β€˜π‘¦) Γ— {(𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ( I β†Ύ (Baseβ€˜πΎ)))})) Fn dom 𝐽))
145, 13mpbiri 257 1 ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ 𝐼 Fn dom 𝐽)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1539   ∈ wcel 2104  {csn 4629   ↦ cmpt 5232   I cid 5574   Γ— cxp 5675  dom cdm 5677   β†Ύ cres 5679   Fn wfn 6539  β€˜cfv 6544  Basecbs 17150  LHypclh 39160  LTrncltrn 39277  DIsoAcdia 40204  DIsoBcdib 40314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-dib 40315
This theorem is referenced by:  dibdiadm  40331  dibfnN  40332  dibclN  40338
  Copyright terms: Public domain W3C validator