Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibeldmN Structured version   Visualization version   GIF version

Theorem dibeldmN 41267
Description: Member of domain of the partial isomorphism B. (Contributed by NM, 17-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dibfn.b 𝐵 = (Base‘𝐾)
dibfn.l = (le‘𝐾)
dibfn.h 𝐻 = (LHyp‘𝐾)
dibfn.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dibeldmN ((𝐾𝑉𝑊𝐻) → (𝑋 ∈ dom 𝐼 ↔ (𝑋𝐵𝑋 𝑊)))

Proof of Theorem dibeldmN
StepHypRef Expression
1 dibfn.h . . . 4 𝐻 = (LHyp‘𝐾)
2 eqid 2733 . . . 4 ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊)
3 dibfn.i . . . 4 𝐼 = ((DIsoB‘𝐾)‘𝑊)
41, 2, 3dibdiadm 41264 . . 3 ((𝐾𝑉𝑊𝐻) → dom 𝐼 = dom ((DIsoA‘𝐾)‘𝑊))
54eleq2d 2819 . 2 ((𝐾𝑉𝑊𝐻) → (𝑋 ∈ dom 𝐼𝑋 ∈ dom ((DIsoA‘𝐾)‘𝑊)))
6 dibfn.b . . 3 𝐵 = (Base‘𝐾)
7 dibfn.l . . 3 = (le‘𝐾)
86, 7, 1, 2diaeldm 41145 . 2 ((𝐾𝑉𝑊𝐻) → (𝑋 ∈ dom ((DIsoA‘𝐾)‘𝑊) ↔ (𝑋𝐵𝑋 𝑊)))
95, 8bitrd 279 1 ((𝐾𝑉𝑊𝐻) → (𝑋 ∈ dom 𝐼 ↔ (𝑋𝐵𝑋 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113   class class class wbr 5095  dom cdm 5621  cfv 6489  Basecbs 17130  lecple 17178  LHypclh 40093  DIsoAcdia 41137  DIsoBcdib 41247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-disoa 41138  df-dib 41248
This theorem is referenced by:  dibf11N  41270  dibintclN  41276  dihmeetlem2N  41408
  Copyright terms: Public domain W3C validator