Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibeldmN Structured version   Visualization version   GIF version

Theorem dibeldmN 41141
Description: Member of domain of the partial isomorphism B. (Contributed by NM, 17-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dibfn.b 𝐵 = (Base‘𝐾)
dibfn.l = (le‘𝐾)
dibfn.h 𝐻 = (LHyp‘𝐾)
dibfn.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dibeldmN ((𝐾𝑉𝑊𝐻) → (𝑋 ∈ dom 𝐼 ↔ (𝑋𝐵𝑋 𝑊)))

Proof of Theorem dibeldmN
StepHypRef Expression
1 dibfn.h . . . 4 𝐻 = (LHyp‘𝐾)
2 eqid 2735 . . . 4 ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊)
3 dibfn.i . . . 4 𝐼 = ((DIsoB‘𝐾)‘𝑊)
41, 2, 3dibdiadm 41138 . . 3 ((𝐾𝑉𝑊𝐻) → dom 𝐼 = dom ((DIsoA‘𝐾)‘𝑊))
54eleq2d 2825 . 2 ((𝐾𝑉𝑊𝐻) → (𝑋 ∈ dom 𝐼𝑋 ∈ dom ((DIsoA‘𝐾)‘𝑊)))
6 dibfn.b . . 3 𝐵 = (Base‘𝐾)
7 dibfn.l . . 3 = (le‘𝐾)
86, 7, 1, 2diaeldm 41019 . 2 ((𝐾𝑉𝑊𝐻) → (𝑋 ∈ dom ((DIsoA‘𝐾)‘𝑊) ↔ (𝑋𝐵𝑋 𝑊)))
95, 8bitrd 279 1 ((𝐾𝑉𝑊𝐻) → (𝑋 ∈ dom 𝐼 ↔ (𝑋𝐵𝑋 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106   class class class wbr 5148  dom cdm 5689  cfv 6563  Basecbs 17245  lecple 17305  LHypclh 39967  DIsoAcdia 41011  DIsoBcdib 41121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-disoa 41012  df-dib 41122
This theorem is referenced by:  dibf11N  41144  dibintclN  41150  dihmeetlem2N  41282
  Copyright terms: Public domain W3C validator