Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibelval1st Structured version   Visualization version   GIF version

Theorem dibelval1st 41128
Description: Membership in value of the partial isomorphism B for a lattice 𝐾. (Contributed by NM, 13-Feb-2014.)
Hypotheses
Ref Expression
dibelval1.b 𝐵 = (Base‘𝐾)
dibelval1.l = (le‘𝐾)
dibelval1.h 𝐻 = (LHyp‘𝐾)
dibelval1.j 𝐽 = ((DIsoA‘𝐾)‘𝑊)
dibelval1.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dibelval1st (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑌 ∈ (𝐼𝑋)) → (1st𝑌) ∈ (𝐽𝑋))

Proof of Theorem dibelval1st
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 dibelval1.b . . . . 5 𝐵 = (Base‘𝐾)
2 dibelval1.l . . . . 5 = (le‘𝐾)
3 dibelval1.h . . . . 5 𝐻 = (LHyp‘𝐾)
4 eqid 2729 . . . . 5 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
5 eqid 2729 . . . . 5 (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))
6 dibelval1.j . . . . 5 𝐽 = ((DIsoA‘𝐾)‘𝑊)
7 dibelval1.i . . . . 5 𝐼 = ((DIsoB‘𝐾)‘𝑊)
81, 2, 3, 4, 5, 6, 7dibval2 41123 . . . 4 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) = ((𝐽𝑋) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}))
98eleq2d 2814 . . 3 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝑌 ∈ (𝐼𝑋) ↔ 𝑌 ∈ ((𝐽𝑋) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))})))
109biimp3a 1471 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑌 ∈ (𝐼𝑋)) → 𝑌 ∈ ((𝐽𝑋) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}))
11 xp1st 7956 . 2 (𝑌 ∈ ((𝐽𝑋) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}) → (1st𝑌) ∈ (𝐽𝑋))
1210, 11syl 17 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑌 ∈ (𝐼𝑋)) → (1st𝑌) ∈ (𝐽𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {csn 4577   class class class wbr 5092  cmpt 5173   I cid 5513   × cxp 5617  cres 5621  cfv 6482  1st c1st 7922  Basecbs 17120  lecple 17168  LHypclh 39963  LTrncltrn 40080  DIsoAcdia 41007  DIsoBcdib 41117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-1st 7924  df-disoa 41008  df-dib 41118
This theorem is referenced by:  dibelval1st1  41129  dibelval1st2N  41130  diblss  41149
  Copyright terms: Public domain W3C validator