Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibelval2nd Structured version   Visualization version   GIF version

Theorem dibelval2nd 39093
Description: Membership in value of the partial isomorphism B for a lattice 𝐾. (Contributed by NM, 13-Feb-2014.)
Hypotheses
Ref Expression
dibelval2nd.b 𝐵 = (Base‘𝐾)
dibelval2nd.l = (le‘𝐾)
dibelval2nd.h 𝐻 = (LHyp‘𝐾)
dibelval2nd.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dibelval2nd.o 0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
dibelval2nd.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dibelval2nd (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑌 ∈ (𝐼𝑋)) → (2nd𝑌) = 0 )
Distinct variable groups:   𝑓,𝐾   𝑓,𝑊
Allowed substitution hints:   𝐵(𝑓)   𝑇(𝑓)   𝐻(𝑓)   𝐼(𝑓)   (𝑓)   𝑉(𝑓)   𝑋(𝑓)   𝑌(𝑓)   0 (𝑓)

Proof of Theorem dibelval2nd
StepHypRef Expression
1 dibelval2nd.b . . . . 5 𝐵 = (Base‘𝐾)
2 dibelval2nd.l . . . . 5 = (le‘𝐾)
3 dibelval2nd.h . . . . 5 𝐻 = (LHyp‘𝐾)
4 dibelval2nd.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
5 dibelval2nd.o . . . . 5 0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
6 eqid 2738 . . . . 5 ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊)
7 dibelval2nd.i . . . . 5 𝐼 = ((DIsoB‘𝐾)‘𝑊)
81, 2, 3, 4, 5, 6, 7dibval2 39085 . . . 4 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) = ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × { 0 }))
98eleq2d 2824 . . 3 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝑌 ∈ (𝐼𝑋) ↔ 𝑌 ∈ ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × { 0 })))
109biimp3a 1467 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑌 ∈ (𝐼𝑋)) → 𝑌 ∈ ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × { 0 }))
11 xp2nd 7837 . 2 (𝑌 ∈ ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × { 0 }) → (2nd𝑌) ∈ { 0 })
12 elsni 4575 . 2 ((2nd𝑌) ∈ { 0 } → (2nd𝑌) = 0 )
1310, 11, 123syl 18 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑌 ∈ (𝐼𝑋)) → (2nd𝑌) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  {csn 4558   class class class wbr 5070  cmpt 5153   I cid 5479   × cxp 5578  cres 5582  cfv 6418  2nd c2nd 7803  Basecbs 16840  lecple 16895  LHypclh 37925  LTrncltrn 38042  DIsoAcdia 38969  DIsoBcdib 39079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-2nd 7805  df-disoa 38970  df-dib 39080
This theorem is referenced by:  diblss  39111
  Copyright terms: Public domain W3C validator