Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibelval2nd Structured version   Visualization version   GIF version

Theorem dibelval2nd 40327
Description: Membership in value of the partial isomorphism B for a lattice 𝐾. (Contributed by NM, 13-Feb-2014.)
Hypotheses
Ref Expression
dibelval2nd.b 𝐡 = (Baseβ€˜πΎ)
dibelval2nd.l ≀ = (leβ€˜πΎ)
dibelval2nd.h 𝐻 = (LHypβ€˜πΎ)
dibelval2nd.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
dibelval2nd.o 0 = (𝑓 ∈ 𝑇 ↦ ( I β†Ύ 𝐡))
dibelval2nd.i 𝐼 = ((DIsoBβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
dibelval2nd (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š) ∧ π‘Œ ∈ (πΌβ€˜π‘‹)) β†’ (2nd β€˜π‘Œ) = 0 )
Distinct variable groups:   𝑓,𝐾   𝑓,π‘Š
Allowed substitution hints:   𝐡(𝑓)   𝑇(𝑓)   𝐻(𝑓)   𝐼(𝑓)   ≀ (𝑓)   𝑉(𝑓)   𝑋(𝑓)   π‘Œ(𝑓)   0 (𝑓)

Proof of Theorem dibelval2nd
StepHypRef Expression
1 dibelval2nd.b . . . . 5 𝐡 = (Baseβ€˜πΎ)
2 dibelval2nd.l . . . . 5 ≀ = (leβ€˜πΎ)
3 dibelval2nd.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
4 dibelval2nd.t . . . . 5 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
5 dibelval2nd.o . . . . 5 0 = (𝑓 ∈ 𝑇 ↦ ( I β†Ύ 𝐡))
6 eqid 2731 . . . . 5 ((DIsoAβ€˜πΎ)β€˜π‘Š) = ((DIsoAβ€˜πΎ)β€˜π‘Š)
7 dibelval2nd.i . . . . 5 𝐼 = ((DIsoBβ€˜πΎ)β€˜π‘Š)
81, 2, 3, 4, 5, 6, 7dibval2 40319 . . . 4 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ (πΌβ€˜π‘‹) = ((((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘‹) Γ— { 0 }))
98eleq2d 2818 . . 3 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ (π‘Œ ∈ (πΌβ€˜π‘‹) ↔ π‘Œ ∈ ((((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘‹) Γ— { 0 })))
109biimp3a 1468 . 2 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š) ∧ π‘Œ ∈ (πΌβ€˜π‘‹)) β†’ π‘Œ ∈ ((((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘‹) Γ— { 0 }))
11 xp2nd 8012 . 2 (π‘Œ ∈ ((((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘‹) Γ— { 0 }) β†’ (2nd β€˜π‘Œ) ∈ { 0 })
12 elsni 4645 . 2 ((2nd β€˜π‘Œ) ∈ { 0 } β†’ (2nd β€˜π‘Œ) = 0 )
1310, 11, 123syl 18 1 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š) ∧ π‘Œ ∈ (πΌβ€˜π‘‹)) β†’ (2nd β€˜π‘Œ) = 0 )
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105  {csn 4628   class class class wbr 5148   ↦ cmpt 5231   I cid 5573   Γ— cxp 5674   β†Ύ cres 5678  β€˜cfv 6543  2nd c2nd 7978  Basecbs 17149  lecple 17209  LHypclh 39159  LTrncltrn 39276  DIsoAcdia 40203  DIsoBcdib 40313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-2nd 7980  df-disoa 40204  df-dib 40314
This theorem is referenced by:  diblss  40345
  Copyright terms: Public domain W3C validator