| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dibelval2nd | Structured version Visualization version GIF version | ||
| Description: Membership in value of the partial isomorphism B for a lattice 𝐾. (Contributed by NM, 13-Feb-2014.) |
| Ref | Expression |
|---|---|
| dibelval2nd.b | ⊢ 𝐵 = (Base‘𝐾) |
| dibelval2nd.l | ⊢ ≤ = (le‘𝐾) |
| dibelval2nd.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dibelval2nd.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| dibelval2nd.o | ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| dibelval2nd.i | ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| dibelval2nd | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ (𝐼‘𝑋)) → (2nd ‘𝑌) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dibelval2nd.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | dibelval2nd.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
| 3 | dibelval2nd.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | dibelval2nd.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 5 | dibelval2nd.o | . . . . 5 ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
| 6 | eqid 2730 | . . . . 5 ⊢ ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊) | |
| 7 | dibelval2nd.i | . . . . 5 ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | dibval2 41133 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × { 0 })) |
| 9 | 8 | eleq2d 2815 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝑌 ∈ (𝐼‘𝑋) ↔ 𝑌 ∈ ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × { 0 }))) |
| 10 | 9 | biimp3a 1471 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ (𝐼‘𝑋)) → 𝑌 ∈ ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × { 0 })) |
| 11 | xp2nd 8003 | . 2 ⊢ (𝑌 ∈ ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × { 0 }) → (2nd ‘𝑌) ∈ { 0 }) | |
| 12 | elsni 4608 | . 2 ⊢ ((2nd ‘𝑌) ∈ { 0 } → (2nd ‘𝑌) = 0 ) | |
| 13 | 10, 11, 12 | 3syl 18 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ (𝐼‘𝑋)) → (2nd ‘𝑌) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {csn 4591 class class class wbr 5109 ↦ cmpt 5190 I cid 5534 × cxp 5638 ↾ cres 5642 ‘cfv 6513 2nd c2nd 7969 Basecbs 17185 lecple 17233 LHypclh 39973 LTrncltrn 40090 DIsoAcdia 41017 DIsoBcdib 41127 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-2nd 7971 df-disoa 41018 df-dib 41128 |
| This theorem is referenced by: diblss 41159 |
| Copyright terms: Public domain | W3C validator |