![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dibelval2nd | Structured version Visualization version GIF version |
Description: Membership in value of the partial isomorphism B for a lattice πΎ. (Contributed by NM, 13-Feb-2014.) |
Ref | Expression |
---|---|
dibelval2nd.b | β’ π΅ = (BaseβπΎ) |
dibelval2nd.l | β’ β€ = (leβπΎ) |
dibelval2nd.h | β’ π» = (LHypβπΎ) |
dibelval2nd.t | β’ π = ((LTrnβπΎ)βπ) |
dibelval2nd.o | β’ 0 = (π β π β¦ ( I βΎ π΅)) |
dibelval2nd.i | β’ πΌ = ((DIsoBβπΎ)βπ) |
Ref | Expression |
---|---|
dibelval2nd | β’ (((πΎ β π β§ π β π») β§ (π β π΅ β§ π β€ π) β§ π β (πΌβπ)) β (2nd βπ) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dibelval2nd.b | . . . . 5 β’ π΅ = (BaseβπΎ) | |
2 | dibelval2nd.l | . . . . 5 β’ β€ = (leβπΎ) | |
3 | dibelval2nd.h | . . . . 5 β’ π» = (LHypβπΎ) | |
4 | dibelval2nd.t | . . . . 5 β’ π = ((LTrnβπΎ)βπ) | |
5 | dibelval2nd.o | . . . . 5 β’ 0 = (π β π β¦ ( I βΎ π΅)) | |
6 | eqid 2731 | . . . . 5 β’ ((DIsoAβπΎ)βπ) = ((DIsoAβπΎ)βπ) | |
7 | dibelval2nd.i | . . . . 5 β’ πΌ = ((DIsoBβπΎ)βπ) | |
8 | 1, 2, 3, 4, 5, 6, 7 | dibval2 40319 | . . . 4 β’ (((πΎ β π β§ π β π») β§ (π β π΅ β§ π β€ π)) β (πΌβπ) = ((((DIsoAβπΎ)βπ)βπ) Γ { 0 })) |
9 | 8 | eleq2d 2818 | . . 3 β’ (((πΎ β π β§ π β π») β§ (π β π΅ β§ π β€ π)) β (π β (πΌβπ) β π β ((((DIsoAβπΎ)βπ)βπ) Γ { 0 }))) |
10 | 9 | biimp3a 1468 | . 2 β’ (((πΎ β π β§ π β π») β§ (π β π΅ β§ π β€ π) β§ π β (πΌβπ)) β π β ((((DIsoAβπΎ)βπ)βπ) Γ { 0 })) |
11 | xp2nd 8012 | . 2 β’ (π β ((((DIsoAβπΎ)βπ)βπ) Γ { 0 }) β (2nd βπ) β { 0 }) | |
12 | elsni 4645 | . 2 β’ ((2nd βπ) β { 0 } β (2nd βπ) = 0 ) | |
13 | 10, 11, 12 | 3syl 18 | 1 β’ (((πΎ β π β§ π β π») β§ (π β π΅ β§ π β€ π) β§ π β (πΌβπ)) β (2nd βπ) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1086 = wceq 1540 β wcel 2105 {csn 4628 class class class wbr 5148 β¦ cmpt 5231 I cid 5573 Γ cxp 5674 βΎ cres 5678 βcfv 6543 2nd c2nd 7978 Basecbs 17149 lecple 17209 LHypclh 39159 LTrncltrn 39276 DIsoAcdia 40203 DIsoBcdib 40313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-2nd 7980 df-disoa 40204 df-dib 40314 |
This theorem is referenced by: diblss 40345 |
Copyright terms: Public domain | W3C validator |