Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dibelval2nd | Structured version Visualization version GIF version |
Description: Membership in value of the partial isomorphism B for a lattice 𝐾. (Contributed by NM, 13-Feb-2014.) |
Ref | Expression |
---|---|
dibelval2nd.b | ⊢ 𝐵 = (Base‘𝐾) |
dibelval2nd.l | ⊢ ≤ = (le‘𝐾) |
dibelval2nd.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dibelval2nd.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dibelval2nd.o | ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
dibelval2nd.i | ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
dibelval2nd | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ (𝐼‘𝑋)) → (2nd ‘𝑌) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dibelval2nd.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
2 | dibelval2nd.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
3 | dibelval2nd.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | dibelval2nd.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
5 | dibelval2nd.o | . . . . 5 ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
6 | eqid 2736 | . . . . 5 ⊢ ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊) | |
7 | dibelval2nd.i | . . . . 5 ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) | |
8 | 1, 2, 3, 4, 5, 6, 7 | dibval2 39384 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × { 0 })) |
9 | 8 | eleq2d 2822 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝑌 ∈ (𝐼‘𝑋) ↔ 𝑌 ∈ ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × { 0 }))) |
10 | 9 | biimp3a 1468 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ (𝐼‘𝑋)) → 𝑌 ∈ ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × { 0 })) |
11 | xp2nd 7910 | . 2 ⊢ (𝑌 ∈ ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × { 0 }) → (2nd ‘𝑌) ∈ { 0 }) | |
12 | elsni 4587 | . 2 ⊢ ((2nd ‘𝑌) ∈ { 0 } → (2nd ‘𝑌) = 0 ) | |
13 | 10, 11, 12 | 3syl 18 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ (𝐼‘𝑋)) → (2nd ‘𝑌) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 {csn 4570 class class class wbr 5086 ↦ cmpt 5169 I cid 5505 × cxp 5605 ↾ cres 5609 ‘cfv 6465 2nd c2nd 7876 Basecbs 16986 lecple 17043 LHypclh 38224 LTrncltrn 38341 DIsoAcdia 39268 DIsoBcdib 39378 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5170 df-id 5506 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-2nd 7878 df-disoa 39269 df-dib 39379 |
This theorem is referenced by: diblss 39410 |
Copyright terms: Public domain | W3C validator |