Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibelval2nd Structured version   Visualization version   GIF version

Theorem dibelval2nd 41134
Description: Membership in value of the partial isomorphism B for a lattice 𝐾. (Contributed by NM, 13-Feb-2014.)
Hypotheses
Ref Expression
dibelval2nd.b 𝐵 = (Base‘𝐾)
dibelval2nd.l = (le‘𝐾)
dibelval2nd.h 𝐻 = (LHyp‘𝐾)
dibelval2nd.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dibelval2nd.o 0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
dibelval2nd.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dibelval2nd (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑌 ∈ (𝐼𝑋)) → (2nd𝑌) = 0 )
Distinct variable groups:   𝑓,𝐾   𝑓,𝑊
Allowed substitution hints:   𝐵(𝑓)   𝑇(𝑓)   𝐻(𝑓)   𝐼(𝑓)   (𝑓)   𝑉(𝑓)   𝑋(𝑓)   𝑌(𝑓)   0 (𝑓)

Proof of Theorem dibelval2nd
StepHypRef Expression
1 dibelval2nd.b . . . . 5 𝐵 = (Base‘𝐾)
2 dibelval2nd.l . . . . 5 = (le‘𝐾)
3 dibelval2nd.h . . . . 5 𝐻 = (LHyp‘𝐾)
4 dibelval2nd.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
5 dibelval2nd.o . . . . 5 0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
6 eqid 2729 . . . . 5 ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊)
7 dibelval2nd.i . . . . 5 𝐼 = ((DIsoB‘𝐾)‘𝑊)
81, 2, 3, 4, 5, 6, 7dibval2 41126 . . . 4 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) = ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × { 0 }))
98eleq2d 2814 . . 3 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝑌 ∈ (𝐼𝑋) ↔ 𝑌 ∈ ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × { 0 })))
109biimp3a 1471 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑌 ∈ (𝐼𝑋)) → 𝑌 ∈ ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × { 0 }))
11 xp2nd 7964 . 2 (𝑌 ∈ ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × { 0 }) → (2nd𝑌) ∈ { 0 })
12 elsni 4596 . 2 ((2nd𝑌) ∈ { 0 } → (2nd𝑌) = 0 )
1310, 11, 123syl 18 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑌 ∈ (𝐼𝑋)) → (2nd𝑌) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {csn 4579   class class class wbr 5095  cmpt 5176   I cid 5517   × cxp 5621  cres 5625  cfv 6486  2nd c2nd 7930  Basecbs 17138  lecple 17186  LHypclh 39966  LTrncltrn 40083  DIsoAcdia 41010  DIsoBcdib 41120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-2nd 7932  df-disoa 41011  df-dib 41121
This theorem is referenced by:  diblss  41152
  Copyright terms: Public domain W3C validator