Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dibelval2nd | Structured version Visualization version GIF version |
Description: Membership in value of the partial isomorphism B for a lattice 𝐾. (Contributed by NM, 13-Feb-2014.) |
Ref | Expression |
---|---|
dibelval2nd.b | ⊢ 𝐵 = (Base‘𝐾) |
dibelval2nd.l | ⊢ ≤ = (le‘𝐾) |
dibelval2nd.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dibelval2nd.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dibelval2nd.o | ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
dibelval2nd.i | ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
dibelval2nd | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ (𝐼‘𝑋)) → (2nd ‘𝑌) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dibelval2nd.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
2 | dibelval2nd.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
3 | dibelval2nd.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | dibelval2nd.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
5 | dibelval2nd.o | . . . . 5 ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
6 | eqid 2738 | . . . . 5 ⊢ ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊) | |
7 | dibelval2nd.i | . . . . 5 ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) | |
8 | 1, 2, 3, 4, 5, 6, 7 | dibval2 39085 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × { 0 })) |
9 | 8 | eleq2d 2824 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝑌 ∈ (𝐼‘𝑋) ↔ 𝑌 ∈ ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × { 0 }))) |
10 | 9 | biimp3a 1467 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ (𝐼‘𝑋)) → 𝑌 ∈ ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × { 0 })) |
11 | xp2nd 7837 | . 2 ⊢ (𝑌 ∈ ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × { 0 }) → (2nd ‘𝑌) ∈ { 0 }) | |
12 | elsni 4575 | . 2 ⊢ ((2nd ‘𝑌) ∈ { 0 } → (2nd ‘𝑌) = 0 ) | |
13 | 10, 11, 12 | 3syl 18 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ (𝐼‘𝑋)) → (2nd ‘𝑌) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 {csn 4558 class class class wbr 5070 ↦ cmpt 5153 I cid 5479 × cxp 5578 ↾ cres 5582 ‘cfv 6418 2nd c2nd 7803 Basecbs 16840 lecple 16895 LHypclh 37925 LTrncltrn 38042 DIsoAcdia 38969 DIsoBcdib 39079 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-2nd 7805 df-disoa 38970 df-dib 39080 |
This theorem is referenced by: diblss 39111 |
Copyright terms: Public domain | W3C validator |