Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibelval2nd Structured version   Visualization version   GIF version

Theorem dibelval2nd 38292
Description: Membership in value of the partial isomorphism B for a lattice 𝐾. (Contributed by NM, 13-Feb-2014.)
Hypotheses
Ref Expression
dibelval2nd.b 𝐵 = (Base‘𝐾)
dibelval2nd.l = (le‘𝐾)
dibelval2nd.h 𝐻 = (LHyp‘𝐾)
dibelval2nd.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dibelval2nd.o 0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
dibelval2nd.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dibelval2nd (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑌 ∈ (𝐼𝑋)) → (2nd𝑌) = 0 )
Distinct variable groups:   𝑓,𝐾   𝑓,𝑊
Allowed substitution hints:   𝐵(𝑓)   𝑇(𝑓)   𝐻(𝑓)   𝐼(𝑓)   (𝑓)   𝑉(𝑓)   𝑋(𝑓)   𝑌(𝑓)   0 (𝑓)

Proof of Theorem dibelval2nd
StepHypRef Expression
1 dibelval2nd.b . . . . 5 𝐵 = (Base‘𝐾)
2 dibelval2nd.l . . . . 5 = (le‘𝐾)
3 dibelval2nd.h . . . . 5 𝐻 = (LHyp‘𝐾)
4 dibelval2nd.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
5 dibelval2nd.o . . . . 5 0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
6 eqid 2824 . . . . 5 ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊)
7 dibelval2nd.i . . . . 5 𝐼 = ((DIsoB‘𝐾)‘𝑊)
81, 2, 3, 4, 5, 6, 7dibval2 38284 . . . 4 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) = ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × { 0 }))
98eleq2d 2901 . . 3 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝑌 ∈ (𝐼𝑋) ↔ 𝑌 ∈ ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × { 0 })))
109biimp3a 1465 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑌 ∈ (𝐼𝑋)) → 𝑌 ∈ ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × { 0 }))
11 xp2nd 7725 . 2 (𝑌 ∈ ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × { 0 }) → (2nd𝑌) ∈ { 0 })
12 elsni 4587 . 2 ((2nd𝑌) ∈ { 0 } → (2nd𝑌) = 0 )
1310, 11, 123syl 18 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑌 ∈ (𝐼𝑋)) → (2nd𝑌) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1536  wcel 2113  {csn 4570   class class class wbr 5069  cmpt 5149   I cid 5462   × cxp 5556  cres 5560  cfv 6358  2nd c2nd 7691  Basecbs 16486  lecple 16575  LHypclh 37124  LTrncltrn 37241  DIsoAcdia 38168  DIsoBcdib 38278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-2nd 7693  df-disoa 38169  df-dib 38279
This theorem is referenced by:  diblss  38310
  Copyright terms: Public domain W3C validator