| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dibval2 | Structured version Visualization version GIF version | ||
| Description: Value of the partial isomorphism B. (Contributed by NM, 18-Jan-2014.) |
| Ref | Expression |
|---|---|
| dibval2.b | ⊢ 𝐵 = (Base‘𝐾) |
| dibval2.l | ⊢ ≤ = (le‘𝐾) |
| dibval2.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dibval2.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| dibval2.o | ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| dibval2.j | ⊢ 𝐽 = ((DIsoA‘𝐾)‘𝑊) |
| dibval2.i | ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| dibval2 | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = ((𝐽‘𝑋) × { 0 })) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dibval2.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | dibval2.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 3 | dibval2.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | dibval2.j | . . . 4 ⊢ 𝐽 = ((DIsoA‘𝐾)‘𝑊) | |
| 5 | 1, 2, 3, 4 | diaeldm 41081 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑋 ∈ dom 𝐽 ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊))) |
| 6 | 5 | biimpar 477 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → 𝑋 ∈ dom 𝐽) |
| 7 | dibval2.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 8 | dibval2.o | . . 3 ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
| 9 | dibval2.i | . . 3 ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) | |
| 10 | 1, 3, 7, 8, 4, 9 | dibval 41187 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐽) → (𝐼‘𝑋) = ((𝐽‘𝑋) × { 0 })) |
| 11 | 6, 10 | syldan 591 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = ((𝐽‘𝑋) × { 0 })) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {csn 4576 class class class wbr 5091 ↦ cmpt 5172 I cid 5510 × cxp 5614 dom cdm 5616 ↾ cres 5618 ‘cfv 6481 Basecbs 17120 lecple 17168 LHypclh 40029 LTrncltrn 40146 DIsoAcdia 41073 DIsoBcdib 41183 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-disoa 41074 df-dib 41184 |
| This theorem is referenced by: dibopelval2 41190 dibval3N 41191 dibelval3 41192 dibelval1st 41194 dibelval2nd 41197 dibn0 41198 dibord 41204 dib0 41209 dib1dim 41210 dibss 41214 diblss 41215 dihwN 41334 |
| Copyright terms: Public domain | W3C validator |