![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dibval2 | Structured version Visualization version GIF version |
Description: Value of the partial isomorphism B. (Contributed by NM, 18-Jan-2014.) |
Ref | Expression |
---|---|
dibval2.b | ⊢ 𝐵 = (Base‘𝐾) |
dibval2.l | ⊢ ≤ = (le‘𝐾) |
dibval2.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dibval2.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dibval2.o | ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
dibval2.j | ⊢ 𝐽 = ((DIsoA‘𝐾)‘𝑊) |
dibval2.i | ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
dibval2 | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = ((𝐽‘𝑋) × { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dibval2.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | dibval2.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
3 | dibval2.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | dibval2.j | . . . 4 ⊢ 𝐽 = ((DIsoA‘𝐾)‘𝑊) | |
5 | 1, 2, 3, 4 | diaeldm 37057 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑋 ∈ dom 𝐽 ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊))) |
6 | 5 | biimpar 470 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → 𝑋 ∈ dom 𝐽) |
7 | dibval2.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
8 | dibval2.o | . . 3 ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
9 | dibval2.i | . . 3 ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) | |
10 | 1, 3, 7, 8, 4, 9 | dibval 37163 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐽) → (𝐼‘𝑋) = ((𝐽‘𝑋) × { 0 })) |
11 | 6, 10 | syldan 586 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = ((𝐽‘𝑋) × { 0 })) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 {csn 4368 class class class wbr 4843 ↦ cmpt 4922 I cid 5219 × cxp 5310 dom cdm 5312 ↾ cres 5314 ‘cfv 6101 Basecbs 16184 lecple 16274 LHypclh 36005 LTrncltrn 36122 DIsoAcdia 37049 DIsoBcdib 37159 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-disoa 37050 df-dib 37160 |
This theorem is referenced by: dibopelval2 37166 dibval3N 37167 dibelval3 37168 dibelval1st 37170 dibelval2nd 37173 dibn0 37174 dibord 37180 dib0 37185 dib1dim 37186 dibss 37190 diblss 37191 dihwN 37310 |
Copyright terms: Public domain | W3C validator |