Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dibval2 | Structured version Visualization version GIF version |
Description: Value of the partial isomorphism B. (Contributed by NM, 18-Jan-2014.) |
Ref | Expression |
---|---|
dibval2.b | ⊢ 𝐵 = (Base‘𝐾) |
dibval2.l | ⊢ ≤ = (le‘𝐾) |
dibval2.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dibval2.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dibval2.o | ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
dibval2.j | ⊢ 𝐽 = ((DIsoA‘𝐾)‘𝑊) |
dibval2.i | ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
dibval2 | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = ((𝐽‘𝑋) × { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dibval2.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | dibval2.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
3 | dibval2.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | dibval2.j | . . . 4 ⊢ 𝐽 = ((DIsoA‘𝐾)‘𝑊) | |
5 | 1, 2, 3, 4 | diaeldm 39050 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑋 ∈ dom 𝐽 ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊))) |
6 | 5 | biimpar 478 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → 𝑋 ∈ dom 𝐽) |
7 | dibval2.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
8 | dibval2.o | . . 3 ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
9 | dibval2.i | . . 3 ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) | |
10 | 1, 3, 7, 8, 4, 9 | dibval 39156 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐽) → (𝐼‘𝑋) = ((𝐽‘𝑋) × { 0 })) |
11 | 6, 10 | syldan 591 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = ((𝐽‘𝑋) × { 0 })) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {csn 4561 class class class wbr 5074 ↦ cmpt 5157 I cid 5488 × cxp 5587 dom cdm 5589 ↾ cres 5591 ‘cfv 6433 Basecbs 16912 lecple 16969 LHypclh 37998 LTrncltrn 38115 DIsoAcdia 39042 DIsoBcdib 39152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-disoa 39043 df-dib 39153 |
This theorem is referenced by: dibopelval2 39159 dibval3N 39160 dibelval3 39161 dibelval1st 39163 dibelval2nd 39166 dibn0 39167 dibord 39173 dib0 39178 dib1dim 39179 dibss 39183 diblss 39184 dihwN 39303 |
Copyright terms: Public domain | W3C validator |