| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dibval2 | Structured version Visualization version GIF version | ||
| Description: Value of the partial isomorphism B. (Contributed by NM, 18-Jan-2014.) |
| Ref | Expression |
|---|---|
| dibval2.b | ⊢ 𝐵 = (Base‘𝐾) |
| dibval2.l | ⊢ ≤ = (le‘𝐾) |
| dibval2.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dibval2.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| dibval2.o | ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| dibval2.j | ⊢ 𝐽 = ((DIsoA‘𝐾)‘𝑊) |
| dibval2.i | ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| dibval2 | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = ((𝐽‘𝑋) × { 0 })) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dibval2.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | dibval2.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 3 | dibval2.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | dibval2.j | . . . 4 ⊢ 𝐽 = ((DIsoA‘𝐾)‘𝑊) | |
| 5 | 1, 2, 3, 4 | diaeldm 41156 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑋 ∈ dom 𝐽 ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊))) |
| 6 | 5 | biimpar 477 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → 𝑋 ∈ dom 𝐽) |
| 7 | dibval2.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 8 | dibval2.o | . . 3 ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
| 9 | dibval2.i | . . 3 ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) | |
| 10 | 1, 3, 7, 8, 4, 9 | dibval 41262 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐽) → (𝐼‘𝑋) = ((𝐽‘𝑋) × { 0 })) |
| 11 | 6, 10 | syldan 591 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = ((𝐽‘𝑋) × { 0 })) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {csn 4575 class class class wbr 5093 ↦ cmpt 5174 I cid 5513 × cxp 5617 dom cdm 5619 ↾ cres 5621 ‘cfv 6486 Basecbs 17122 lecple 17170 LHypclh 40104 LTrncltrn 40221 DIsoAcdia 41148 DIsoBcdib 41258 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-disoa 41149 df-dib 41259 |
| This theorem is referenced by: dibopelval2 41265 dibval3N 41266 dibelval3 41267 dibelval1st 41269 dibelval2nd 41272 dibn0 41273 dibord 41279 dib0 41284 dib1dim 41285 dibss 41289 diblss 41290 dihwN 41409 |
| Copyright terms: Public domain | W3C validator |