![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dibval | Structured version Visualization version GIF version |
Description: The partial isomorphism B for a lattice πΎ. (Contributed by NM, 8-Dec-2013.) |
Ref | Expression |
---|---|
dibval.b | β’ π΅ = (BaseβπΎ) |
dibval.h | β’ π» = (LHypβπΎ) |
dibval.t | β’ π = ((LTrnβπΎ)βπ) |
dibval.o | β’ 0 = (π β π β¦ ( I βΎ π΅)) |
dibval.j | β’ π½ = ((DIsoAβπΎ)βπ) |
dibval.i | β’ πΌ = ((DIsoBβπΎ)βπ) |
Ref | Expression |
---|---|
dibval | β’ (((πΎ β π β§ π β π») β§ π β dom π½) β (πΌβπ) = ((π½βπ) Γ { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dibval.b | . . . . 5 β’ π΅ = (BaseβπΎ) | |
2 | dibval.h | . . . . 5 β’ π» = (LHypβπΎ) | |
3 | dibval.t | . . . . 5 β’ π = ((LTrnβπΎ)βπ) | |
4 | dibval.o | . . . . 5 β’ 0 = (π β π β¦ ( I βΎ π΅)) | |
5 | dibval.j | . . . . 5 β’ π½ = ((DIsoAβπΎ)βπ) | |
6 | dibval.i | . . . . 5 β’ πΌ = ((DIsoBβπΎ)βπ) | |
7 | 1, 2, 3, 4, 5, 6 | dibfval 40000 | . . . 4 β’ ((πΎ β π β§ π β π») β πΌ = (π₯ β dom π½ β¦ ((π½βπ₯) Γ { 0 }))) |
8 | 7 | adantr 481 | . . 3 β’ (((πΎ β π β§ π β π») β§ π β dom π½) β πΌ = (π₯ β dom π½ β¦ ((π½βπ₯) Γ { 0 }))) |
9 | 8 | fveq1d 6890 | . 2 β’ (((πΎ β π β§ π β π») β§ π β dom π½) β (πΌβπ) = ((π₯ β dom π½ β¦ ((π½βπ₯) Γ { 0 }))βπ)) |
10 | fveq2 6888 | . . . . 5 β’ (π₯ = π β (π½βπ₯) = (π½βπ)) | |
11 | 10 | xpeq1d 5704 | . . . 4 β’ (π₯ = π β ((π½βπ₯) Γ { 0 }) = ((π½βπ) Γ { 0 })) |
12 | eqid 2732 | . . . 4 β’ (π₯ β dom π½ β¦ ((π½βπ₯) Γ { 0 })) = (π₯ β dom π½ β¦ ((π½βπ₯) Γ { 0 })) | |
13 | fvex 6901 | . . . . 5 β’ (π½βπ) β V | |
14 | snex 5430 | . . . . 5 β’ { 0 } β V | |
15 | 13, 14 | xpex 7736 | . . . 4 β’ ((π½βπ) Γ { 0 }) β V |
16 | 11, 12, 15 | fvmpt 6995 | . . 3 β’ (π β dom π½ β ((π₯ β dom π½ β¦ ((π½βπ₯) Γ { 0 }))βπ) = ((π½βπ) Γ { 0 })) |
17 | 16 | adantl 482 | . 2 β’ (((πΎ β π β§ π β π») β§ π β dom π½) β ((π₯ β dom π½ β¦ ((π½βπ₯) Γ { 0 }))βπ) = ((π½βπ) Γ { 0 })) |
18 | 9, 17 | eqtrd 2772 | 1 β’ (((πΎ β π β§ π β π») β§ π β dom π½) β (πΌβπ) = ((π½βπ) Γ { 0 })) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 {csn 4627 β¦ cmpt 5230 I cid 5572 Γ cxp 5673 dom cdm 5675 βΎ cres 5677 βcfv 6540 Basecbs 17140 LHypclh 38843 LTrncltrn 38960 DIsoAcdia 39887 DIsoBcdib 39997 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-dib 39998 |
This theorem is referenced by: dibopelvalN 40002 dibval2 40003 dibvalrel 40022 |
Copyright terms: Public domain | W3C validator |