| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dibval | Structured version Visualization version GIF version | ||
| Description: The partial isomorphism B for a lattice 𝐾. (Contributed by NM, 8-Dec-2013.) |
| Ref | Expression |
|---|---|
| dibval.b | ⊢ 𝐵 = (Base‘𝐾) |
| dibval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dibval.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| dibval.o | ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| dibval.j | ⊢ 𝐽 = ((DIsoA‘𝐾)‘𝑊) |
| dibval.i | ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| dibval | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐽) → (𝐼‘𝑋) = ((𝐽‘𝑋) × { 0 })) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dibval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | dibval.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 3 | dibval.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 4 | dibval.o | . . . . 5 ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
| 5 | dibval.j | . . . . 5 ⊢ 𝐽 = ((DIsoA‘𝐾)‘𝑊) | |
| 6 | dibval.i | . . . . 5 ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) | |
| 7 | 1, 2, 3, 4, 5, 6 | dibfval 41142 | . . . 4 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 = (𝑥 ∈ dom 𝐽 ↦ ((𝐽‘𝑥) × { 0 }))) |
| 8 | 7 | adantr 480 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐽) → 𝐼 = (𝑥 ∈ dom 𝐽 ↦ ((𝐽‘𝑥) × { 0 }))) |
| 9 | 8 | fveq1d 6863 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐽) → (𝐼‘𝑋) = ((𝑥 ∈ dom 𝐽 ↦ ((𝐽‘𝑥) × { 0 }))‘𝑋)) |
| 10 | fveq2 6861 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝐽‘𝑥) = (𝐽‘𝑋)) | |
| 11 | 10 | xpeq1d 5670 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝐽‘𝑥) × { 0 }) = ((𝐽‘𝑋) × { 0 })) |
| 12 | eqid 2730 | . . . 4 ⊢ (𝑥 ∈ dom 𝐽 ↦ ((𝐽‘𝑥) × { 0 })) = (𝑥 ∈ dom 𝐽 ↦ ((𝐽‘𝑥) × { 0 })) | |
| 13 | fvex 6874 | . . . . 5 ⊢ (𝐽‘𝑋) ∈ V | |
| 14 | snex 5394 | . . . . 5 ⊢ { 0 } ∈ V | |
| 15 | 13, 14 | xpex 7732 | . . . 4 ⊢ ((𝐽‘𝑋) × { 0 }) ∈ V |
| 16 | 11, 12, 15 | fvmpt 6971 | . . 3 ⊢ (𝑋 ∈ dom 𝐽 → ((𝑥 ∈ dom 𝐽 ↦ ((𝐽‘𝑥) × { 0 }))‘𝑋) = ((𝐽‘𝑋) × { 0 })) |
| 17 | 16 | adantl 481 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐽) → ((𝑥 ∈ dom 𝐽 ↦ ((𝐽‘𝑥) × { 0 }))‘𝑋) = ((𝐽‘𝑋) × { 0 })) |
| 18 | 9, 17 | eqtrd 2765 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐽) → (𝐼‘𝑋) = ((𝐽‘𝑋) × { 0 })) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4592 ↦ cmpt 5191 I cid 5535 × cxp 5639 dom cdm 5641 ↾ cres 5643 ‘cfv 6514 Basecbs 17186 LHypclh 39985 LTrncltrn 40102 DIsoAcdia 41029 DIsoBcdib 41139 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-dib 41140 |
| This theorem is referenced by: dibopelvalN 41144 dibval2 41145 dibvalrel 41164 |
| Copyright terms: Public domain | W3C validator |