Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibval Structured version   Visualization version   GIF version

Theorem dibval 41143
Description: The partial isomorphism B for a lattice 𝐾. (Contributed by NM, 8-Dec-2013.)
Hypotheses
Ref Expression
dibval.b 𝐵 = (Base‘𝐾)
dibval.h 𝐻 = (LHyp‘𝐾)
dibval.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dibval.o 0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
dibval.j 𝐽 = ((DIsoA‘𝐾)‘𝑊)
dibval.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dibval (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐽) → (𝐼𝑋) = ((𝐽𝑋) × { 0 }))
Distinct variable groups:   𝑓,𝐾   𝑓,𝑊
Allowed substitution hints:   𝐵(𝑓)   𝑇(𝑓)   𝐻(𝑓)   𝐼(𝑓)   𝐽(𝑓)   𝑉(𝑓)   𝑋(𝑓)   0 (𝑓)

Proof of Theorem dibval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dibval.b . . . . 5 𝐵 = (Base‘𝐾)
2 dibval.h . . . . 5 𝐻 = (LHyp‘𝐾)
3 dibval.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
4 dibval.o . . . . 5 0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
5 dibval.j . . . . 5 𝐽 = ((DIsoA‘𝐾)‘𝑊)
6 dibval.i . . . . 5 𝐼 = ((DIsoB‘𝐾)‘𝑊)
71, 2, 3, 4, 5, 6dibfval 41142 . . . 4 ((𝐾𝑉𝑊𝐻) → 𝐼 = (𝑥 ∈ dom 𝐽 ↦ ((𝐽𝑥) × { 0 })))
87adantr 480 . . 3 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐽) → 𝐼 = (𝑥 ∈ dom 𝐽 ↦ ((𝐽𝑥) × { 0 })))
98fveq1d 6863 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐽) → (𝐼𝑋) = ((𝑥 ∈ dom 𝐽 ↦ ((𝐽𝑥) × { 0 }))‘𝑋))
10 fveq2 6861 . . . . 5 (𝑥 = 𝑋 → (𝐽𝑥) = (𝐽𝑋))
1110xpeq1d 5670 . . . 4 (𝑥 = 𝑋 → ((𝐽𝑥) × { 0 }) = ((𝐽𝑋) × { 0 }))
12 eqid 2730 . . . 4 (𝑥 ∈ dom 𝐽 ↦ ((𝐽𝑥) × { 0 })) = (𝑥 ∈ dom 𝐽 ↦ ((𝐽𝑥) × { 0 }))
13 fvex 6874 . . . . 5 (𝐽𝑋) ∈ V
14 snex 5394 . . . . 5 { 0 } ∈ V
1513, 14xpex 7732 . . . 4 ((𝐽𝑋) × { 0 }) ∈ V
1611, 12, 15fvmpt 6971 . . 3 (𝑋 ∈ dom 𝐽 → ((𝑥 ∈ dom 𝐽 ↦ ((𝐽𝑥) × { 0 }))‘𝑋) = ((𝐽𝑋) × { 0 }))
1716adantl 481 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐽) → ((𝑥 ∈ dom 𝐽 ↦ ((𝐽𝑥) × { 0 }))‘𝑋) = ((𝐽𝑋) × { 0 }))
189, 17eqtrd 2765 1 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐽) → (𝐼𝑋) = ((𝐽𝑋) × { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {csn 4592  cmpt 5191   I cid 5535   × cxp 5639  dom cdm 5641  cres 5643  cfv 6514  Basecbs 17186  LHypclh 39985  LTrncltrn 40102  DIsoAcdia 41029  DIsoBcdib 41139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-dib 41140
This theorem is referenced by:  dibopelvalN  41144  dibval2  41145  dibvalrel  41164
  Copyright terms: Public domain W3C validator