Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dibval | Structured version Visualization version GIF version |
Description: The partial isomorphism B for a lattice 𝐾. (Contributed by NM, 8-Dec-2013.) |
Ref | Expression |
---|---|
dibval.b | ⊢ 𝐵 = (Base‘𝐾) |
dibval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dibval.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dibval.o | ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
dibval.j | ⊢ 𝐽 = ((DIsoA‘𝐾)‘𝑊) |
dibval.i | ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
dibval | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐽) → (𝐼‘𝑋) = ((𝐽‘𝑋) × { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dibval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
2 | dibval.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | dibval.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
4 | dibval.o | . . . . 5 ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
5 | dibval.j | . . . . 5 ⊢ 𝐽 = ((DIsoA‘𝐾)‘𝑊) | |
6 | dibval.i | . . . . 5 ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) | |
7 | 1, 2, 3, 4, 5, 6 | dibfval 39134 | . . . 4 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 = (𝑥 ∈ dom 𝐽 ↦ ((𝐽‘𝑥) × { 0 }))) |
8 | 7 | adantr 480 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐽) → 𝐼 = (𝑥 ∈ dom 𝐽 ↦ ((𝐽‘𝑥) × { 0 }))) |
9 | 8 | fveq1d 6770 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐽) → (𝐼‘𝑋) = ((𝑥 ∈ dom 𝐽 ↦ ((𝐽‘𝑥) × { 0 }))‘𝑋)) |
10 | fveq2 6768 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝐽‘𝑥) = (𝐽‘𝑋)) | |
11 | 10 | xpeq1d 5617 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝐽‘𝑥) × { 0 }) = ((𝐽‘𝑋) × { 0 })) |
12 | eqid 2739 | . . . 4 ⊢ (𝑥 ∈ dom 𝐽 ↦ ((𝐽‘𝑥) × { 0 })) = (𝑥 ∈ dom 𝐽 ↦ ((𝐽‘𝑥) × { 0 })) | |
13 | fvex 6781 | . . . . 5 ⊢ (𝐽‘𝑋) ∈ V | |
14 | snex 5357 | . . . . 5 ⊢ { 0 } ∈ V | |
15 | 13, 14 | xpex 7594 | . . . 4 ⊢ ((𝐽‘𝑋) × { 0 }) ∈ V |
16 | 11, 12, 15 | fvmpt 6869 | . . 3 ⊢ (𝑋 ∈ dom 𝐽 → ((𝑥 ∈ dom 𝐽 ↦ ((𝐽‘𝑥) × { 0 }))‘𝑋) = ((𝐽‘𝑋) × { 0 })) |
17 | 16 | adantl 481 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐽) → ((𝑥 ∈ dom 𝐽 ↦ ((𝐽‘𝑥) × { 0 }))‘𝑋) = ((𝐽‘𝑋) × { 0 })) |
18 | 9, 17 | eqtrd 2779 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐽) → (𝐼‘𝑋) = ((𝐽‘𝑋) × { 0 })) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 {csn 4566 ↦ cmpt 5161 I cid 5487 × cxp 5586 dom cdm 5588 ↾ cres 5590 ‘cfv 6430 Basecbs 16893 LHypclh 37977 LTrncltrn 38094 DIsoAcdia 39021 DIsoBcdib 39131 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-dib 39132 |
This theorem is referenced by: dibopelvalN 39136 dibval2 39137 dibvalrel 39156 |
Copyright terms: Public domain | W3C validator |