| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dibval | Structured version Visualization version GIF version | ||
| Description: The partial isomorphism B for a lattice 𝐾. (Contributed by NM, 8-Dec-2013.) |
| Ref | Expression |
|---|---|
| dibval.b | ⊢ 𝐵 = (Base‘𝐾) |
| dibval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dibval.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| dibval.o | ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| dibval.j | ⊢ 𝐽 = ((DIsoA‘𝐾)‘𝑊) |
| dibval.i | ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| dibval | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐽) → (𝐼‘𝑋) = ((𝐽‘𝑋) × { 0 })) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dibval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | dibval.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 3 | dibval.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 4 | dibval.o | . . . . 5 ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
| 5 | dibval.j | . . . . 5 ⊢ 𝐽 = ((DIsoA‘𝐾)‘𝑊) | |
| 6 | dibval.i | . . . . 5 ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) | |
| 7 | 1, 2, 3, 4, 5, 6 | dibfval 41102 | . . . 4 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 = (𝑥 ∈ dom 𝐽 ↦ ((𝐽‘𝑥) × { 0 }))) |
| 8 | 7 | adantr 480 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐽) → 𝐼 = (𝑥 ∈ dom 𝐽 ↦ ((𝐽‘𝑥) × { 0 }))) |
| 9 | 8 | fveq1d 6888 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐽) → (𝐼‘𝑋) = ((𝑥 ∈ dom 𝐽 ↦ ((𝐽‘𝑥) × { 0 }))‘𝑋)) |
| 10 | fveq2 6886 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝐽‘𝑥) = (𝐽‘𝑋)) | |
| 11 | 10 | xpeq1d 5694 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝐽‘𝑥) × { 0 }) = ((𝐽‘𝑋) × { 0 })) |
| 12 | eqid 2734 | . . . 4 ⊢ (𝑥 ∈ dom 𝐽 ↦ ((𝐽‘𝑥) × { 0 })) = (𝑥 ∈ dom 𝐽 ↦ ((𝐽‘𝑥) × { 0 })) | |
| 13 | fvex 6899 | . . . . 5 ⊢ (𝐽‘𝑋) ∈ V | |
| 14 | snex 5416 | . . . . 5 ⊢ { 0 } ∈ V | |
| 15 | 13, 14 | xpex 7755 | . . . 4 ⊢ ((𝐽‘𝑋) × { 0 }) ∈ V |
| 16 | 11, 12, 15 | fvmpt 6996 | . . 3 ⊢ (𝑋 ∈ dom 𝐽 → ((𝑥 ∈ dom 𝐽 ↦ ((𝐽‘𝑥) × { 0 }))‘𝑋) = ((𝐽‘𝑋) × { 0 })) |
| 17 | 16 | adantl 481 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐽) → ((𝑥 ∈ dom 𝐽 ↦ ((𝐽‘𝑥) × { 0 }))‘𝑋) = ((𝐽‘𝑋) × { 0 })) |
| 18 | 9, 17 | eqtrd 2769 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐽) → (𝐼‘𝑋) = ((𝐽‘𝑋) × { 0 })) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {csn 4606 ↦ cmpt 5205 I cid 5557 × cxp 5663 dom cdm 5665 ↾ cres 5667 ‘cfv 6541 Basecbs 17229 LHypclh 39945 LTrncltrn 40062 DIsoAcdia 40989 DIsoBcdib 41099 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-dib 41100 |
| This theorem is referenced by: dibopelvalN 41104 dibval2 41105 dibvalrel 41124 |
| Copyright terms: Public domain | W3C validator |