Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibval Structured version   Visualization version   GIF version

Theorem dibval 41101
Description: The partial isomorphism B for a lattice 𝐾. (Contributed by NM, 8-Dec-2013.)
Hypotheses
Ref Expression
dibval.b 𝐵 = (Base‘𝐾)
dibval.h 𝐻 = (LHyp‘𝐾)
dibval.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dibval.o 0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
dibval.j 𝐽 = ((DIsoA‘𝐾)‘𝑊)
dibval.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dibval (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐽) → (𝐼𝑋) = ((𝐽𝑋) × { 0 }))
Distinct variable groups:   𝑓,𝐾   𝑓,𝑊
Allowed substitution hints:   𝐵(𝑓)   𝑇(𝑓)   𝐻(𝑓)   𝐼(𝑓)   𝐽(𝑓)   𝑉(𝑓)   𝑋(𝑓)   0 (𝑓)

Proof of Theorem dibval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dibval.b . . . . 5 𝐵 = (Base‘𝐾)
2 dibval.h . . . . 5 𝐻 = (LHyp‘𝐾)
3 dibval.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
4 dibval.o . . . . 5 0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
5 dibval.j . . . . 5 𝐽 = ((DIsoA‘𝐾)‘𝑊)
6 dibval.i . . . . 5 𝐼 = ((DIsoB‘𝐾)‘𝑊)
71, 2, 3, 4, 5, 6dibfval 41100 . . . 4 ((𝐾𝑉𝑊𝐻) → 𝐼 = (𝑥 ∈ dom 𝐽 ↦ ((𝐽𝑥) × { 0 })))
87adantr 480 . . 3 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐽) → 𝐼 = (𝑥 ∈ dom 𝐽 ↦ ((𝐽𝑥) × { 0 })))
98fveq1d 6924 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐽) → (𝐼𝑋) = ((𝑥 ∈ dom 𝐽 ↦ ((𝐽𝑥) × { 0 }))‘𝑋))
10 fveq2 6922 . . . . 5 (𝑥 = 𝑋 → (𝐽𝑥) = (𝐽𝑋))
1110xpeq1d 5729 . . . 4 (𝑥 = 𝑋 → ((𝐽𝑥) × { 0 }) = ((𝐽𝑋) × { 0 }))
12 eqid 2740 . . . 4 (𝑥 ∈ dom 𝐽 ↦ ((𝐽𝑥) × { 0 })) = (𝑥 ∈ dom 𝐽 ↦ ((𝐽𝑥) × { 0 }))
13 fvex 6935 . . . . 5 (𝐽𝑋) ∈ V
14 snex 5451 . . . . 5 { 0 } ∈ V
1513, 14xpex 7790 . . . 4 ((𝐽𝑋) × { 0 }) ∈ V
1611, 12, 15fvmpt 7031 . . 3 (𝑋 ∈ dom 𝐽 → ((𝑥 ∈ dom 𝐽 ↦ ((𝐽𝑥) × { 0 }))‘𝑋) = ((𝐽𝑋) × { 0 }))
1716adantl 481 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐽) → ((𝑥 ∈ dom 𝐽 ↦ ((𝐽𝑥) × { 0 }))‘𝑋) = ((𝐽𝑋) × { 0 }))
189, 17eqtrd 2780 1 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐽) → (𝐼𝑋) = ((𝐽𝑋) × { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {csn 4648  cmpt 5249   I cid 5592   × cxp 5698  dom cdm 5700  cres 5702  cfv 6575  Basecbs 17260  LHypclh 39943  LTrncltrn 40060  DIsoAcdia 40987  DIsoBcdib 41097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-dib 41098
This theorem is referenced by:  dibopelvalN  41102  dibval2  41103  dibvalrel  41122
  Copyright terms: Public domain W3C validator