![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dibval | Structured version Visualization version GIF version |
Description: The partial isomorphism B for a lattice 𝐾. (Contributed by NM, 8-Dec-2013.) |
Ref | Expression |
---|---|
dibval.b | ⊢ 𝐵 = (Base‘𝐾) |
dibval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dibval.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dibval.o | ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
dibval.j | ⊢ 𝐽 = ((DIsoA‘𝐾)‘𝑊) |
dibval.i | ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
dibval | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐽) → (𝐼‘𝑋) = ((𝐽‘𝑋) × { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dibval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
2 | dibval.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | dibval.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
4 | dibval.o | . . . . 5 ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
5 | dibval.j | . . . . 5 ⊢ 𝐽 = ((DIsoA‘𝐾)‘𝑊) | |
6 | dibval.i | . . . . 5 ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) | |
7 | 1, 2, 3, 4, 5, 6 | dibfval 41100 | . . . 4 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 = (𝑥 ∈ dom 𝐽 ↦ ((𝐽‘𝑥) × { 0 }))) |
8 | 7 | adantr 480 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐽) → 𝐼 = (𝑥 ∈ dom 𝐽 ↦ ((𝐽‘𝑥) × { 0 }))) |
9 | 8 | fveq1d 6924 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐽) → (𝐼‘𝑋) = ((𝑥 ∈ dom 𝐽 ↦ ((𝐽‘𝑥) × { 0 }))‘𝑋)) |
10 | fveq2 6922 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝐽‘𝑥) = (𝐽‘𝑋)) | |
11 | 10 | xpeq1d 5729 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝐽‘𝑥) × { 0 }) = ((𝐽‘𝑋) × { 0 })) |
12 | eqid 2740 | . . . 4 ⊢ (𝑥 ∈ dom 𝐽 ↦ ((𝐽‘𝑥) × { 0 })) = (𝑥 ∈ dom 𝐽 ↦ ((𝐽‘𝑥) × { 0 })) | |
13 | fvex 6935 | . . . . 5 ⊢ (𝐽‘𝑋) ∈ V | |
14 | snex 5451 | . . . . 5 ⊢ { 0 } ∈ V | |
15 | 13, 14 | xpex 7790 | . . . 4 ⊢ ((𝐽‘𝑋) × { 0 }) ∈ V |
16 | 11, 12, 15 | fvmpt 7031 | . . 3 ⊢ (𝑋 ∈ dom 𝐽 → ((𝑥 ∈ dom 𝐽 ↦ ((𝐽‘𝑥) × { 0 }))‘𝑋) = ((𝐽‘𝑋) × { 0 })) |
17 | 16 | adantl 481 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐽) → ((𝑥 ∈ dom 𝐽 ↦ ((𝐽‘𝑥) × { 0 }))‘𝑋) = ((𝐽‘𝑋) × { 0 })) |
18 | 9, 17 | eqtrd 2780 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐽) → (𝐼‘𝑋) = ((𝐽‘𝑋) × { 0 })) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {csn 4648 ↦ cmpt 5249 I cid 5592 × cxp 5698 dom cdm 5700 ↾ cres 5702 ‘cfv 6575 Basecbs 17260 LHypclh 39943 LTrncltrn 40060 DIsoAcdia 40987 DIsoBcdib 41097 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-dib 41098 |
This theorem is referenced by: dibopelvalN 41102 dibval2 41103 dibvalrel 41122 |
Copyright terms: Public domain | W3C validator |