Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibval Structured version   Visualization version   GIF version

Theorem dibval 39135
Description: The partial isomorphism B for a lattice 𝐾. (Contributed by NM, 8-Dec-2013.)
Hypotheses
Ref Expression
dibval.b 𝐵 = (Base‘𝐾)
dibval.h 𝐻 = (LHyp‘𝐾)
dibval.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dibval.o 0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
dibval.j 𝐽 = ((DIsoA‘𝐾)‘𝑊)
dibval.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dibval (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐽) → (𝐼𝑋) = ((𝐽𝑋) × { 0 }))
Distinct variable groups:   𝑓,𝐾   𝑓,𝑊
Allowed substitution hints:   𝐵(𝑓)   𝑇(𝑓)   𝐻(𝑓)   𝐼(𝑓)   𝐽(𝑓)   𝑉(𝑓)   𝑋(𝑓)   0 (𝑓)

Proof of Theorem dibval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dibval.b . . . . 5 𝐵 = (Base‘𝐾)
2 dibval.h . . . . 5 𝐻 = (LHyp‘𝐾)
3 dibval.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
4 dibval.o . . . . 5 0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
5 dibval.j . . . . 5 𝐽 = ((DIsoA‘𝐾)‘𝑊)
6 dibval.i . . . . 5 𝐼 = ((DIsoB‘𝐾)‘𝑊)
71, 2, 3, 4, 5, 6dibfval 39134 . . . 4 ((𝐾𝑉𝑊𝐻) → 𝐼 = (𝑥 ∈ dom 𝐽 ↦ ((𝐽𝑥) × { 0 })))
87adantr 480 . . 3 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐽) → 𝐼 = (𝑥 ∈ dom 𝐽 ↦ ((𝐽𝑥) × { 0 })))
98fveq1d 6770 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐽) → (𝐼𝑋) = ((𝑥 ∈ dom 𝐽 ↦ ((𝐽𝑥) × { 0 }))‘𝑋))
10 fveq2 6768 . . . . 5 (𝑥 = 𝑋 → (𝐽𝑥) = (𝐽𝑋))
1110xpeq1d 5617 . . . 4 (𝑥 = 𝑋 → ((𝐽𝑥) × { 0 }) = ((𝐽𝑋) × { 0 }))
12 eqid 2739 . . . 4 (𝑥 ∈ dom 𝐽 ↦ ((𝐽𝑥) × { 0 })) = (𝑥 ∈ dom 𝐽 ↦ ((𝐽𝑥) × { 0 }))
13 fvex 6781 . . . . 5 (𝐽𝑋) ∈ V
14 snex 5357 . . . . 5 { 0 } ∈ V
1513, 14xpex 7594 . . . 4 ((𝐽𝑋) × { 0 }) ∈ V
1611, 12, 15fvmpt 6869 . . 3 (𝑋 ∈ dom 𝐽 → ((𝑥 ∈ dom 𝐽 ↦ ((𝐽𝑥) × { 0 }))‘𝑋) = ((𝐽𝑋) × { 0 }))
1716adantl 481 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐽) → ((𝑥 ∈ dom 𝐽 ↦ ((𝐽𝑥) × { 0 }))‘𝑋) = ((𝐽𝑋) × { 0 }))
189, 17eqtrd 2779 1 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐽) → (𝐼𝑋) = ((𝐽𝑋) × { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  {csn 4566  cmpt 5161   I cid 5487   × cxp 5586  dom cdm 5588  cres 5590  cfv 6430  Basecbs 16893  LHypclh 37977  LTrncltrn 38094  DIsoAcdia 39021  DIsoBcdib 39131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-dib 39132
This theorem is referenced by:  dibopelvalN  39136  dibval2  39137  dibvalrel  39156
  Copyright terms: Public domain W3C validator