Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibval Structured version   Visualization version   GIF version

Theorem dibval 38438
Description: The partial isomorphism B for a lattice 𝐾. (Contributed by NM, 8-Dec-2013.)
Hypotheses
Ref Expression
dibval.b 𝐵 = (Base‘𝐾)
dibval.h 𝐻 = (LHyp‘𝐾)
dibval.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dibval.o 0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
dibval.j 𝐽 = ((DIsoA‘𝐾)‘𝑊)
dibval.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dibval (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐽) → (𝐼𝑋) = ((𝐽𝑋) × { 0 }))
Distinct variable groups:   𝑓,𝐾   𝑓,𝑊
Allowed substitution hints:   𝐵(𝑓)   𝑇(𝑓)   𝐻(𝑓)   𝐼(𝑓)   𝐽(𝑓)   𝑉(𝑓)   𝑋(𝑓)   0 (𝑓)

Proof of Theorem dibval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dibval.b . . . . 5 𝐵 = (Base‘𝐾)
2 dibval.h . . . . 5 𝐻 = (LHyp‘𝐾)
3 dibval.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
4 dibval.o . . . . 5 0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
5 dibval.j . . . . 5 𝐽 = ((DIsoA‘𝐾)‘𝑊)
6 dibval.i . . . . 5 𝐼 = ((DIsoB‘𝐾)‘𝑊)
71, 2, 3, 4, 5, 6dibfval 38437 . . . 4 ((𝐾𝑉𝑊𝐻) → 𝐼 = (𝑥 ∈ dom 𝐽 ↦ ((𝐽𝑥) × { 0 })))
87adantr 484 . . 3 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐽) → 𝐼 = (𝑥 ∈ dom 𝐽 ↦ ((𝐽𝑥) × { 0 })))
98fveq1d 6647 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐽) → (𝐼𝑋) = ((𝑥 ∈ dom 𝐽 ↦ ((𝐽𝑥) × { 0 }))‘𝑋))
10 fveq2 6645 . . . . 5 (𝑥 = 𝑋 → (𝐽𝑥) = (𝐽𝑋))
1110xpeq1d 5548 . . . 4 (𝑥 = 𝑋 → ((𝐽𝑥) × { 0 }) = ((𝐽𝑋) × { 0 }))
12 eqid 2798 . . . 4 (𝑥 ∈ dom 𝐽 ↦ ((𝐽𝑥) × { 0 })) = (𝑥 ∈ dom 𝐽 ↦ ((𝐽𝑥) × { 0 }))
13 fvex 6658 . . . . 5 (𝐽𝑋) ∈ V
14 snex 5297 . . . . 5 { 0 } ∈ V
1513, 14xpex 7456 . . . 4 ((𝐽𝑋) × { 0 }) ∈ V
1611, 12, 15fvmpt 6745 . . 3 (𝑋 ∈ dom 𝐽 → ((𝑥 ∈ dom 𝐽 ↦ ((𝐽𝑥) × { 0 }))‘𝑋) = ((𝐽𝑋) × { 0 }))
1716adantl 485 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐽) → ((𝑥 ∈ dom 𝐽 ↦ ((𝐽𝑥) × { 0 }))‘𝑋) = ((𝐽𝑋) × { 0 }))
189, 17eqtrd 2833 1 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐽) → (𝐼𝑋) = ((𝐽𝑋) × { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  {csn 4525  cmpt 5110   I cid 5424   × cxp 5517  dom cdm 5519  cres 5521  cfv 6324  Basecbs 16475  LHypclh 37280  LTrncltrn 37397  DIsoAcdia 38324  DIsoBcdib 38434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-dib 38435
This theorem is referenced by:  dibopelvalN  38439  dibval2  38440  dibvalrel  38459
  Copyright terms: Public domain W3C validator