Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dirkerval Structured version   Visualization version   GIF version

Theorem dirkerval 46089
Description: The Nth Dirichlet Kernel. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
dirkerval.1 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
Assertion
Ref Expression
dirkerval (𝑁 ∈ ℕ → (𝐷𝑁) = (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
Distinct variable groups:   𝑁,𝑠   𝑛,𝑠
Allowed substitution hints:   𝐷(𝑛,𝑠)   𝑁(𝑛)

Proof of Theorem dirkerval
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . . . 7 ((𝑚 = 𝑁𝑠 ∈ ℝ) → 𝑚 = 𝑁)
21oveq2d 7403 . . . . . 6 ((𝑚 = 𝑁𝑠 ∈ ℝ) → (2 · 𝑚) = (2 · 𝑁))
32oveq1d 7402 . . . . 5 ((𝑚 = 𝑁𝑠 ∈ ℝ) → ((2 · 𝑚) + 1) = ((2 · 𝑁) + 1))
43oveq1d 7402 . . . 4 ((𝑚 = 𝑁𝑠 ∈ ℝ) → (((2 · 𝑚) + 1) / (2 · π)) = (((2 · 𝑁) + 1) / (2 · π)))
51oveq1d 7402 . . . . . 6 ((𝑚 = 𝑁𝑠 ∈ ℝ) → (𝑚 + (1 / 2)) = (𝑁 + (1 / 2)))
65fvoveq1d 7409 . . . . 5 ((𝑚 = 𝑁𝑠 ∈ ℝ) → (sin‘((𝑚 + (1 / 2)) · 𝑠)) = (sin‘((𝑁 + (1 / 2)) · 𝑠)))
76oveq1d 7402 . . . 4 ((𝑚 = 𝑁𝑠 ∈ ℝ) → ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))) = ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
84, 7ifeq12d 4510 . . 3 ((𝑚 = 𝑁𝑠 ∈ ℝ) → if((𝑠 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))) = if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))
98mpteq2dva 5200 . 2 (𝑚 = 𝑁 → (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))) = (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
10 dirkerval.1 . . 3 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
11 simpl 482 . . . . . . . . 9 ((𝑛 = 𝑚𝑠 ∈ ℝ) → 𝑛 = 𝑚)
1211oveq2d 7403 . . . . . . . 8 ((𝑛 = 𝑚𝑠 ∈ ℝ) → (2 · 𝑛) = (2 · 𝑚))
1312oveq1d 7402 . . . . . . 7 ((𝑛 = 𝑚𝑠 ∈ ℝ) → ((2 · 𝑛) + 1) = ((2 · 𝑚) + 1))
1413oveq1d 7402 . . . . . 6 ((𝑛 = 𝑚𝑠 ∈ ℝ) → (((2 · 𝑛) + 1) / (2 · π)) = (((2 · 𝑚) + 1) / (2 · π)))
1511oveq1d 7402 . . . . . . . 8 ((𝑛 = 𝑚𝑠 ∈ ℝ) → (𝑛 + (1 / 2)) = (𝑚 + (1 / 2)))
1615fvoveq1d 7409 . . . . . . 7 ((𝑛 = 𝑚𝑠 ∈ ℝ) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) = (sin‘((𝑚 + (1 / 2)) · 𝑠)))
1716oveq1d 7402 . . . . . 6 ((𝑛 = 𝑚𝑠 ∈ ℝ) → ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))) = ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
1814, 17ifeq12d 4510 . . . . 5 ((𝑛 = 𝑚𝑠 ∈ ℝ) → if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))) = if((𝑠 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))
1918mpteq2dva 5200 . . . 4 (𝑛 = 𝑚 → (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))) = (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
2019cbvmptv 5211 . . 3 (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))) = (𝑚 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
2110, 20eqtri 2752 . 2 𝐷 = (𝑚 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
22 reex 11159 . . 3 ℝ ∈ V
2322mptex 7197 . 2 (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))) ∈ V
249, 21, 23fvmpt 6968 1 (𝑁 ∈ ℕ → (𝐷𝑁) = (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  ifcif 4488  cmpt 5188  cfv 6511  (class class class)co 7387  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073   / cdiv 11835  cn 12186  2c2 12241   mod cmo 13831  sincsin 16029  πcpi 16032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-cnex 11124  ax-resscn 11125
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390
This theorem is referenced by:  dirkerval2  46092  dirkerf  46095  dirkertrigeq  46099  dirkercncflem2  46102  dirkercncflem4  46104
  Copyright terms: Public domain W3C validator