Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dirkerval Structured version   Visualization version   GIF version

Theorem dirkerval 41249
Description: The Nth Dirichlet Kernel. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
dirkerval.1 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
Assertion
Ref Expression
dirkerval (𝑁 ∈ ℕ → (𝐷𝑁) = (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
Distinct variable groups:   𝑁,𝑠   𝑛,𝑠
Allowed substitution hints:   𝐷(𝑛,𝑠)   𝑁(𝑛)

Proof of Theorem dirkerval
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 simpl 476 . . . . . . 7 ((𝑚 = 𝑁𝑠 ∈ ℝ) → 𝑚 = 𝑁)
21oveq2d 6940 . . . . . 6 ((𝑚 = 𝑁𝑠 ∈ ℝ) → (2 · 𝑚) = (2 · 𝑁))
32oveq1d 6939 . . . . 5 ((𝑚 = 𝑁𝑠 ∈ ℝ) → ((2 · 𝑚) + 1) = ((2 · 𝑁) + 1))
43oveq1d 6939 . . . 4 ((𝑚 = 𝑁𝑠 ∈ ℝ) → (((2 · 𝑚) + 1) / (2 · π)) = (((2 · 𝑁) + 1) / (2 · π)))
51oveq1d 6939 . . . . . 6 ((𝑚 = 𝑁𝑠 ∈ ℝ) → (𝑚 + (1 / 2)) = (𝑁 + (1 / 2)))
65fvoveq1d 6946 . . . . 5 ((𝑚 = 𝑁𝑠 ∈ ℝ) → (sin‘((𝑚 + (1 / 2)) · 𝑠)) = (sin‘((𝑁 + (1 / 2)) · 𝑠)))
76oveq1d 6939 . . . 4 ((𝑚 = 𝑁𝑠 ∈ ℝ) → ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))) = ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
84, 7ifeq12d 4327 . . 3 ((𝑚 = 𝑁𝑠 ∈ ℝ) → if((𝑠 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))) = if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))
98mpteq2dva 4981 . 2 (𝑚 = 𝑁 → (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))) = (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
10 dirkerval.1 . . 3 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
11 simpl 476 . . . . . . . . 9 ((𝑛 = 𝑚𝑠 ∈ ℝ) → 𝑛 = 𝑚)
1211oveq2d 6940 . . . . . . . 8 ((𝑛 = 𝑚𝑠 ∈ ℝ) → (2 · 𝑛) = (2 · 𝑚))
1312oveq1d 6939 . . . . . . 7 ((𝑛 = 𝑚𝑠 ∈ ℝ) → ((2 · 𝑛) + 1) = ((2 · 𝑚) + 1))
1413oveq1d 6939 . . . . . 6 ((𝑛 = 𝑚𝑠 ∈ ℝ) → (((2 · 𝑛) + 1) / (2 · π)) = (((2 · 𝑚) + 1) / (2 · π)))
1511oveq1d 6939 . . . . . . . 8 ((𝑛 = 𝑚𝑠 ∈ ℝ) → (𝑛 + (1 / 2)) = (𝑚 + (1 / 2)))
1615fvoveq1d 6946 . . . . . . 7 ((𝑛 = 𝑚𝑠 ∈ ℝ) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) = (sin‘((𝑚 + (1 / 2)) · 𝑠)))
1716oveq1d 6939 . . . . . 6 ((𝑛 = 𝑚𝑠 ∈ ℝ) → ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))) = ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
1814, 17ifeq12d 4327 . . . . 5 ((𝑛 = 𝑚𝑠 ∈ ℝ) → if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))) = if((𝑠 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))
1918mpteq2dva 4981 . . . 4 (𝑛 = 𝑚 → (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))) = (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
2019cbvmptv 4987 . . 3 (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))) = (𝑚 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
2110, 20eqtri 2802 . 2 𝐷 = (𝑚 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
22 reex 10365 . . 3 ℝ ∈ V
2322mptex 6760 . 2 (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))) ∈ V
249, 21, 23fvmpt 6544 1 (𝑁 ∈ ℕ → (𝐷𝑁) = (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2107  ifcif 4307  cmpt 4967  cfv 6137  (class class class)co 6924  cr 10273  0cc0 10274  1c1 10275   + caddc 10277   · cmul 10279   / cdiv 11035  cn 11379  2c2 11435   mod cmo 12992  sincsin 15205  πcpi 15208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pr 5140  ax-cnex 10330  ax-resscn 10331
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-id 5263  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-ov 6927
This theorem is referenced by:  dirkerval2  41252  dirkerf  41255  dirkertrigeq  41259  dirkercncflem2  41262  dirkercncflem4  41264
  Copyright terms: Public domain W3C validator