Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dirkerval Structured version   Visualization version   GIF version

Theorem dirkerval 42733
Description: The Nth Dirichlet Kernel. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
dirkerval.1 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
Assertion
Ref Expression
dirkerval (𝑁 ∈ ℕ → (𝐷𝑁) = (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
Distinct variable groups:   𝑁,𝑠   𝑛,𝑠
Allowed substitution hints:   𝐷(𝑛,𝑠)   𝑁(𝑛)

Proof of Theorem dirkerval
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 simpl 486 . . . . . . 7 ((𝑚 = 𝑁𝑠 ∈ ℝ) → 𝑚 = 𝑁)
21oveq2d 7151 . . . . . 6 ((𝑚 = 𝑁𝑠 ∈ ℝ) → (2 · 𝑚) = (2 · 𝑁))
32oveq1d 7150 . . . . 5 ((𝑚 = 𝑁𝑠 ∈ ℝ) → ((2 · 𝑚) + 1) = ((2 · 𝑁) + 1))
43oveq1d 7150 . . . 4 ((𝑚 = 𝑁𝑠 ∈ ℝ) → (((2 · 𝑚) + 1) / (2 · π)) = (((2 · 𝑁) + 1) / (2 · π)))
51oveq1d 7150 . . . . . 6 ((𝑚 = 𝑁𝑠 ∈ ℝ) → (𝑚 + (1 / 2)) = (𝑁 + (1 / 2)))
65fvoveq1d 7157 . . . . 5 ((𝑚 = 𝑁𝑠 ∈ ℝ) → (sin‘((𝑚 + (1 / 2)) · 𝑠)) = (sin‘((𝑁 + (1 / 2)) · 𝑠)))
76oveq1d 7150 . . . 4 ((𝑚 = 𝑁𝑠 ∈ ℝ) → ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))) = ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
84, 7ifeq12d 4445 . . 3 ((𝑚 = 𝑁𝑠 ∈ ℝ) → if((𝑠 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))) = if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))
98mpteq2dva 5125 . 2 (𝑚 = 𝑁 → (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))) = (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
10 dirkerval.1 . . 3 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
11 simpl 486 . . . . . . . . 9 ((𝑛 = 𝑚𝑠 ∈ ℝ) → 𝑛 = 𝑚)
1211oveq2d 7151 . . . . . . . 8 ((𝑛 = 𝑚𝑠 ∈ ℝ) → (2 · 𝑛) = (2 · 𝑚))
1312oveq1d 7150 . . . . . . 7 ((𝑛 = 𝑚𝑠 ∈ ℝ) → ((2 · 𝑛) + 1) = ((2 · 𝑚) + 1))
1413oveq1d 7150 . . . . . 6 ((𝑛 = 𝑚𝑠 ∈ ℝ) → (((2 · 𝑛) + 1) / (2 · π)) = (((2 · 𝑚) + 1) / (2 · π)))
1511oveq1d 7150 . . . . . . . 8 ((𝑛 = 𝑚𝑠 ∈ ℝ) → (𝑛 + (1 / 2)) = (𝑚 + (1 / 2)))
1615fvoveq1d 7157 . . . . . . 7 ((𝑛 = 𝑚𝑠 ∈ ℝ) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) = (sin‘((𝑚 + (1 / 2)) · 𝑠)))
1716oveq1d 7150 . . . . . 6 ((𝑛 = 𝑚𝑠 ∈ ℝ) → ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))) = ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
1814, 17ifeq12d 4445 . . . . 5 ((𝑛 = 𝑚𝑠 ∈ ℝ) → if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))) = if((𝑠 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))
1918mpteq2dva 5125 . . . 4 (𝑛 = 𝑚 → (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))) = (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
2019cbvmptv 5133 . . 3 (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))) = (𝑚 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
2110, 20eqtri 2821 . 2 𝐷 = (𝑚 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
22 reex 10617 . . 3 ℝ ∈ V
2322mptex 6963 . 2 (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))) ∈ V
249, 21, 23fvmpt 6745 1 (𝑁 ∈ ℕ → (𝐷𝑁) = (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  ifcif 4425  cmpt 5110  cfv 6324  (class class class)co 7135  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   / cdiv 11286  cn 11625  2c2 11680   mod cmo 13232  sincsin 15409  πcpi 15412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pr 5295  ax-cnex 10582  ax-resscn 10583
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138
This theorem is referenced by:  dirkerval2  42736  dirkerf  42739  dirkertrigeq  42743  dirkercncflem2  42746  dirkercncflem4  42748
  Copyright terms: Public domain W3C validator