Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dirkerval Structured version   Visualization version   GIF version

Theorem dirkerval 42383
Description: The Nth Dirichlet Kernel. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
dirkerval.1 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
Assertion
Ref Expression
dirkerval (𝑁 ∈ ℕ → (𝐷𝑁) = (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
Distinct variable groups:   𝑁,𝑠   𝑛,𝑠
Allowed substitution hints:   𝐷(𝑛,𝑠)   𝑁(𝑛)

Proof of Theorem dirkerval
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 simpl 485 . . . . . . 7 ((𝑚 = 𝑁𝑠 ∈ ℝ) → 𝑚 = 𝑁)
21oveq2d 7175 . . . . . 6 ((𝑚 = 𝑁𝑠 ∈ ℝ) → (2 · 𝑚) = (2 · 𝑁))
32oveq1d 7174 . . . . 5 ((𝑚 = 𝑁𝑠 ∈ ℝ) → ((2 · 𝑚) + 1) = ((2 · 𝑁) + 1))
43oveq1d 7174 . . . 4 ((𝑚 = 𝑁𝑠 ∈ ℝ) → (((2 · 𝑚) + 1) / (2 · π)) = (((2 · 𝑁) + 1) / (2 · π)))
51oveq1d 7174 . . . . . 6 ((𝑚 = 𝑁𝑠 ∈ ℝ) → (𝑚 + (1 / 2)) = (𝑁 + (1 / 2)))
65fvoveq1d 7181 . . . . 5 ((𝑚 = 𝑁𝑠 ∈ ℝ) → (sin‘((𝑚 + (1 / 2)) · 𝑠)) = (sin‘((𝑁 + (1 / 2)) · 𝑠)))
76oveq1d 7174 . . . 4 ((𝑚 = 𝑁𝑠 ∈ ℝ) → ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))) = ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
84, 7ifeq12d 4490 . . 3 ((𝑚 = 𝑁𝑠 ∈ ℝ) → if((𝑠 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))) = if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))
98mpteq2dva 5164 . 2 (𝑚 = 𝑁 → (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))) = (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
10 dirkerval.1 . . 3 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
11 simpl 485 . . . . . . . . 9 ((𝑛 = 𝑚𝑠 ∈ ℝ) → 𝑛 = 𝑚)
1211oveq2d 7175 . . . . . . . 8 ((𝑛 = 𝑚𝑠 ∈ ℝ) → (2 · 𝑛) = (2 · 𝑚))
1312oveq1d 7174 . . . . . . 7 ((𝑛 = 𝑚𝑠 ∈ ℝ) → ((2 · 𝑛) + 1) = ((2 · 𝑚) + 1))
1413oveq1d 7174 . . . . . 6 ((𝑛 = 𝑚𝑠 ∈ ℝ) → (((2 · 𝑛) + 1) / (2 · π)) = (((2 · 𝑚) + 1) / (2 · π)))
1511oveq1d 7174 . . . . . . . 8 ((𝑛 = 𝑚𝑠 ∈ ℝ) → (𝑛 + (1 / 2)) = (𝑚 + (1 / 2)))
1615fvoveq1d 7181 . . . . . . 7 ((𝑛 = 𝑚𝑠 ∈ ℝ) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) = (sin‘((𝑚 + (1 / 2)) · 𝑠)))
1716oveq1d 7174 . . . . . 6 ((𝑛 = 𝑚𝑠 ∈ ℝ) → ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))) = ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
1814, 17ifeq12d 4490 . . . . 5 ((𝑛 = 𝑚𝑠 ∈ ℝ) → if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))) = if((𝑠 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))
1918mpteq2dva 5164 . . . 4 (𝑛 = 𝑚 → (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))) = (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
2019cbvmptv 5172 . . 3 (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))) = (𝑚 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
2110, 20eqtri 2847 . 2 𝐷 = (𝑚 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
22 reex 10631 . . 3 ℝ ∈ V
2322mptex 6989 . 2 (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))) ∈ V
249, 21, 23fvmpt 6771 1 (𝑁 ∈ ℕ → (𝐷𝑁) = (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  ifcif 4470  cmpt 5149  cfv 6358  (class class class)co 7159  cr 10539  0cc0 10540  1c1 10541   + caddc 10543   · cmul 10545   / cdiv 11300  cn 11641  2c2 11695   mod cmo 13240  sincsin 15420  πcpi 15423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pr 5333  ax-cnex 10596  ax-resscn 10597
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7162
This theorem is referenced by:  dirkerval2  42386  dirkerf  42389  dirkertrigeq  42393  dirkercncflem2  42396  dirkercncflem4  42398
  Copyright terms: Public domain W3C validator