Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dirkerval2 | Structured version Visualization version GIF version |
Description: The Nth Dirichlet Kernel evaluated at a specific point 𝑆. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
dirkerval2.1 | ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))) |
Ref | Expression |
---|---|
dirkerval2 | ⊢ ((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) → ((𝐷‘𝑁)‘𝑆) = if((𝑆 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑆)) / ((2 · π) · (sin‘(𝑆 / 2)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dirkerval2.1 | . . . . 5 ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))) | |
2 | 1 | dirkerval 43307 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝐷‘𝑁) = (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))) |
3 | oveq1 7220 | . . . . . . 7 ⊢ (𝑠 = 𝑡 → (𝑠 mod (2 · π)) = (𝑡 mod (2 · π))) | |
4 | 3 | eqeq1d 2739 | . . . . . 6 ⊢ (𝑠 = 𝑡 → ((𝑠 mod (2 · π)) = 0 ↔ (𝑡 mod (2 · π)) = 0)) |
5 | oveq2 7221 | . . . . . . . 8 ⊢ (𝑠 = 𝑡 → ((𝑁 + (1 / 2)) · 𝑠) = ((𝑁 + (1 / 2)) · 𝑡)) | |
6 | 5 | fveq2d 6721 | . . . . . . 7 ⊢ (𝑠 = 𝑡 → (sin‘((𝑁 + (1 / 2)) · 𝑠)) = (sin‘((𝑁 + (1 / 2)) · 𝑡))) |
7 | fvoveq1 7236 | . . . . . . . 8 ⊢ (𝑠 = 𝑡 → (sin‘(𝑠 / 2)) = (sin‘(𝑡 / 2))) | |
8 | 7 | oveq2d 7229 | . . . . . . 7 ⊢ (𝑠 = 𝑡 → ((2 · π) · (sin‘(𝑠 / 2))) = ((2 · π) · (sin‘(𝑡 / 2)))) |
9 | 6, 8 | oveq12d 7231 | . . . . . 6 ⊢ (𝑠 = 𝑡 → ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))) = ((sin‘((𝑁 + (1 / 2)) · 𝑡)) / ((2 · π) · (sin‘(𝑡 / 2))))) |
10 | 4, 9 | ifbieq2d 4465 | . . . . 5 ⊢ (𝑠 = 𝑡 → if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))) = if((𝑡 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑡)) / ((2 · π) · (sin‘(𝑡 / 2)))))) |
11 | 10 | cbvmptv 5158 | . . . 4 ⊢ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))) = (𝑡 ∈ ℝ ↦ if((𝑡 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑡)) / ((2 · π) · (sin‘(𝑡 / 2)))))) |
12 | 2, 11 | eqtrdi 2794 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝐷‘𝑁) = (𝑡 ∈ ℝ ↦ if((𝑡 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑡)) / ((2 · π) · (sin‘(𝑡 / 2))))))) |
13 | 12 | adantr 484 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) → (𝐷‘𝑁) = (𝑡 ∈ ℝ ↦ if((𝑡 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑡)) / ((2 · π) · (sin‘(𝑡 / 2))))))) |
14 | simpr 488 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ 𝑡 = 𝑆) → 𝑡 = 𝑆) | |
15 | 14 | oveq1d 7228 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ 𝑡 = 𝑆) → (𝑡 mod (2 · π)) = (𝑆 mod (2 · π))) |
16 | 15 | eqeq1d 2739 | . . 3 ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ 𝑡 = 𝑆) → ((𝑡 mod (2 · π)) = 0 ↔ (𝑆 mod (2 · π)) = 0)) |
17 | 14 | oveq2d 7229 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ 𝑡 = 𝑆) → ((𝑁 + (1 / 2)) · 𝑡) = ((𝑁 + (1 / 2)) · 𝑆)) |
18 | 17 | fveq2d 6721 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ 𝑡 = 𝑆) → (sin‘((𝑁 + (1 / 2)) · 𝑡)) = (sin‘((𝑁 + (1 / 2)) · 𝑆))) |
19 | 14 | fvoveq1d 7235 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ 𝑡 = 𝑆) → (sin‘(𝑡 / 2)) = (sin‘(𝑆 / 2))) |
20 | 19 | oveq2d 7229 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ 𝑡 = 𝑆) → ((2 · π) · (sin‘(𝑡 / 2))) = ((2 · π) · (sin‘(𝑆 / 2)))) |
21 | 18, 20 | oveq12d 7231 | . . 3 ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ 𝑡 = 𝑆) → ((sin‘((𝑁 + (1 / 2)) · 𝑡)) / ((2 · π) · (sin‘(𝑡 / 2)))) = ((sin‘((𝑁 + (1 / 2)) · 𝑆)) / ((2 · π) · (sin‘(𝑆 / 2))))) |
22 | 16, 21 | ifbieq2d 4465 | . 2 ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ 𝑡 = 𝑆) → if((𝑡 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑡)) / ((2 · π) · (sin‘(𝑡 / 2))))) = if((𝑆 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑆)) / ((2 · π) · (sin‘(𝑆 / 2)))))) |
23 | simpr 488 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) → 𝑆 ∈ ℝ) | |
24 | 2re 11904 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
25 | 24 | a1i 11 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 2 ∈ ℝ) |
26 | nnre 11837 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
27 | 25, 26 | remulcld 10863 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℝ) |
28 | 1red 10834 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 1 ∈ ℝ) | |
29 | 27, 28 | readdcld 10862 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ((2 · 𝑁) + 1) ∈ ℝ) |
30 | pire 25348 | . . . . . . 7 ⊢ π ∈ ℝ | |
31 | 30 | a1i 11 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → π ∈ ℝ) |
32 | 25, 31 | remulcld 10863 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (2 · π) ∈ ℝ) |
33 | 2cnd 11908 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 2 ∈ ℂ) | |
34 | 31 | recnd 10861 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → π ∈ ℂ) |
35 | 2pos 11933 | . . . . . . . 8 ⊢ 0 < 2 | |
36 | 35 | a1i 11 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 0 < 2) |
37 | 36 | gt0ne0d 11396 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 2 ≠ 0) |
38 | pipos 25350 | . . . . . . . 8 ⊢ 0 < π | |
39 | 38 | a1i 11 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 0 < π) |
40 | 39 | gt0ne0d 11396 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → π ≠ 0) |
41 | 33, 34, 37, 40 | mulne0d 11484 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (2 · π) ≠ 0) |
42 | 29, 32, 41 | redivcld 11660 | . . . 4 ⊢ (𝑁 ∈ ℕ → (((2 · 𝑁) + 1) / (2 · π)) ∈ ℝ) |
43 | 42 | ad2antrr 726 | . . 3 ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ (𝑆 mod (2 · π)) = 0) → (((2 · 𝑁) + 1) / (2 · π)) ∈ ℝ) |
44 | dirker2re 43308 | . . 3 ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ ¬ (𝑆 mod (2 · π)) = 0) → ((sin‘((𝑁 + (1 / 2)) · 𝑆)) / ((2 · π) · (sin‘(𝑆 / 2)))) ∈ ℝ) | |
45 | 43, 44 | ifclda 4474 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) → if((𝑆 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑆)) / ((2 · π) · (sin‘(𝑆 / 2))))) ∈ ℝ) |
46 | 13, 22, 23, 45 | fvmptd 6825 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) → ((𝐷‘𝑁)‘𝑆) = if((𝑆 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑆)) / ((2 · π) · (sin‘(𝑆 / 2)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ifcif 4439 class class class wbr 5053 ↦ cmpt 5135 ‘cfv 6380 (class class class)co 7213 ℝcr 10728 0cc0 10729 1c1 10730 + caddc 10732 · cmul 10734 < clt 10867 / cdiv 11489 ℕcn 11830 2c2 11885 mod cmo 13442 sincsin 15625 πcpi 15628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-inf2 9256 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 ax-addf 10808 ax-mulf 10809 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-iin 4907 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-se 5510 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isom 6389 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-of 7469 df-om 7645 df-1st 7761 df-2nd 7762 df-supp 7904 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-2o 8203 df-er 8391 df-map 8510 df-pm 8511 df-ixp 8579 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-fsupp 8986 df-fi 9027 df-sup 9058 df-inf 9059 df-oi 9126 df-card 9555 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-7 11898 df-8 11899 df-9 11900 df-n0 12091 df-z 12177 df-dec 12294 df-uz 12439 df-q 12545 df-rp 12587 df-xneg 12704 df-xadd 12705 df-xmul 12706 df-ioo 12939 df-ioc 12940 df-ico 12941 df-icc 12942 df-fz 13096 df-fzo 13239 df-fl 13367 df-mod 13443 df-seq 13575 df-exp 13636 df-fac 13840 df-bc 13869 df-hash 13897 df-shft 14630 df-cj 14662 df-re 14663 df-im 14664 df-sqrt 14798 df-abs 14799 df-limsup 15032 df-clim 15049 df-rlim 15050 df-sum 15250 df-ef 15629 df-sin 15631 df-cos 15632 df-pi 15634 df-struct 16700 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 df-plusg 16815 df-mulr 16816 df-starv 16817 df-sca 16818 df-vsca 16819 df-ip 16820 df-tset 16821 df-ple 16822 df-ds 16824 df-unif 16825 df-hom 16826 df-cco 16827 df-rest 16927 df-topn 16928 df-0g 16946 df-gsum 16947 df-topgen 16948 df-pt 16949 df-prds 16952 df-xrs 17007 df-qtop 17012 df-imas 17013 df-xps 17015 df-mre 17089 df-mrc 17090 df-acs 17092 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-submnd 18219 df-mulg 18489 df-cntz 18711 df-cmn 19172 df-psmet 20355 df-xmet 20356 df-met 20357 df-bl 20358 df-mopn 20359 df-fbas 20360 df-fg 20361 df-cnfld 20364 df-top 21791 df-topon 21808 df-topsp 21830 df-bases 21843 df-cld 21916 df-ntr 21917 df-cls 21918 df-nei 21995 df-lp 22033 df-perf 22034 df-cn 22124 df-cnp 22125 df-haus 22212 df-tx 22459 df-hmeo 22652 df-fil 22743 df-fm 22835 df-flim 22836 df-flf 22837 df-xms 23218 df-ms 23219 df-tms 23220 df-cncf 23775 df-limc 24763 df-dv 24764 |
This theorem is referenced by: dirkerre 43311 dirkerper 43312 dirkerf 43313 dirkercncflem2 43320 fourierdlem66 43388 |
Copyright terms: Public domain | W3C validator |