Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dirkerval2 Structured version   Visualization version   GIF version

Theorem dirkerval2 42779
 Description: The Nth Dirichlet Kernel evaluated at a specific point 𝑆. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
dirkerval2.1 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
Assertion
Ref Expression
dirkerval2 ((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) → ((𝐷𝑁)‘𝑆) = if((𝑆 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑆)) / ((2 · π) · (sin‘(𝑆 / 2))))))
Distinct variable groups:   𝑁,𝑠   𝑛,𝑠
Allowed substitution hints:   𝐷(𝑛,𝑠)   𝑆(𝑛,𝑠)   𝑁(𝑛)

Proof of Theorem dirkerval2
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 dirkerval2.1 . . . . 5 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
21dirkerval 42776 . . . 4 (𝑁 ∈ ℕ → (𝐷𝑁) = (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
3 oveq1 7143 . . . . . . 7 (𝑠 = 𝑡 → (𝑠 mod (2 · π)) = (𝑡 mod (2 · π)))
43eqeq1d 2800 . . . . . 6 (𝑠 = 𝑡 → ((𝑠 mod (2 · π)) = 0 ↔ (𝑡 mod (2 · π)) = 0))
5 oveq2 7144 . . . . . . . 8 (𝑠 = 𝑡 → ((𝑁 + (1 / 2)) · 𝑠) = ((𝑁 + (1 / 2)) · 𝑡))
65fveq2d 6650 . . . . . . 7 (𝑠 = 𝑡 → (sin‘((𝑁 + (1 / 2)) · 𝑠)) = (sin‘((𝑁 + (1 / 2)) · 𝑡)))
7 fvoveq1 7159 . . . . . . . 8 (𝑠 = 𝑡 → (sin‘(𝑠 / 2)) = (sin‘(𝑡 / 2)))
87oveq2d 7152 . . . . . . 7 (𝑠 = 𝑡 → ((2 · π) · (sin‘(𝑠 / 2))) = ((2 · π) · (sin‘(𝑡 / 2))))
96, 8oveq12d 7154 . . . . . 6 (𝑠 = 𝑡 → ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))) = ((sin‘((𝑁 + (1 / 2)) · 𝑡)) / ((2 · π) · (sin‘(𝑡 / 2)))))
104, 9ifbieq2d 4450 . . . . 5 (𝑠 = 𝑡 → if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))) = if((𝑡 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑡)) / ((2 · π) · (sin‘(𝑡 / 2))))))
1110cbvmptv 5134 . . . 4 (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))) = (𝑡 ∈ ℝ ↦ if((𝑡 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑡)) / ((2 · π) · (sin‘(𝑡 / 2))))))
122, 11eqtrdi 2849 . . 3 (𝑁 ∈ ℕ → (𝐷𝑁) = (𝑡 ∈ ℝ ↦ if((𝑡 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑡)) / ((2 · π) · (sin‘(𝑡 / 2)))))))
1312adantr 484 . 2 ((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) → (𝐷𝑁) = (𝑡 ∈ ℝ ↦ if((𝑡 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑡)) / ((2 · π) · (sin‘(𝑡 / 2)))))))
14 simpr 488 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ 𝑡 = 𝑆) → 𝑡 = 𝑆)
1514oveq1d 7151 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ 𝑡 = 𝑆) → (𝑡 mod (2 · π)) = (𝑆 mod (2 · π)))
1615eqeq1d 2800 . . 3 (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ 𝑡 = 𝑆) → ((𝑡 mod (2 · π)) = 0 ↔ (𝑆 mod (2 · π)) = 0))
1714oveq2d 7152 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ 𝑡 = 𝑆) → ((𝑁 + (1 / 2)) · 𝑡) = ((𝑁 + (1 / 2)) · 𝑆))
1817fveq2d 6650 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ 𝑡 = 𝑆) → (sin‘((𝑁 + (1 / 2)) · 𝑡)) = (sin‘((𝑁 + (1 / 2)) · 𝑆)))
1914fvoveq1d 7158 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ 𝑡 = 𝑆) → (sin‘(𝑡 / 2)) = (sin‘(𝑆 / 2)))
2019oveq2d 7152 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ 𝑡 = 𝑆) → ((2 · π) · (sin‘(𝑡 / 2))) = ((2 · π) · (sin‘(𝑆 / 2))))
2118, 20oveq12d 7154 . . 3 (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ 𝑡 = 𝑆) → ((sin‘((𝑁 + (1 / 2)) · 𝑡)) / ((2 · π) · (sin‘(𝑡 / 2)))) = ((sin‘((𝑁 + (1 / 2)) · 𝑆)) / ((2 · π) · (sin‘(𝑆 / 2)))))
2216, 21ifbieq2d 4450 . 2 (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ 𝑡 = 𝑆) → if((𝑡 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑡)) / ((2 · π) · (sin‘(𝑡 / 2))))) = if((𝑆 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑆)) / ((2 · π) · (sin‘(𝑆 / 2))))))
23 simpr 488 . 2 ((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) → 𝑆 ∈ ℝ)
24 2re 11702 . . . . . . . 8 2 ∈ ℝ
2524a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → 2 ∈ ℝ)
26 nnre 11635 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
2725, 26remulcld 10663 . . . . . 6 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℝ)
28 1red 10634 . . . . . 6 (𝑁 ∈ ℕ → 1 ∈ ℝ)
2927, 28readdcld 10662 . . . . 5 (𝑁 ∈ ℕ → ((2 · 𝑁) + 1) ∈ ℝ)
30 pire 25061 . . . . . . 7 π ∈ ℝ
3130a1i 11 . . . . . 6 (𝑁 ∈ ℕ → π ∈ ℝ)
3225, 31remulcld 10663 . . . . 5 (𝑁 ∈ ℕ → (2 · π) ∈ ℝ)
33 2cnd 11706 . . . . . 6 (𝑁 ∈ ℕ → 2 ∈ ℂ)
3431recnd 10661 . . . . . 6 (𝑁 ∈ ℕ → π ∈ ℂ)
35 2pos 11731 . . . . . . . 8 0 < 2
3635a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → 0 < 2)
3736gt0ne0d 11196 . . . . . 6 (𝑁 ∈ ℕ → 2 ≠ 0)
38 pipos 25063 . . . . . . . 8 0 < π
3938a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → 0 < π)
4039gt0ne0d 11196 . . . . . 6 (𝑁 ∈ ℕ → π ≠ 0)
4133, 34, 37, 40mulne0d 11284 . . . . 5 (𝑁 ∈ ℕ → (2 · π) ≠ 0)
4229, 32, 41redivcld 11460 . . . 4 (𝑁 ∈ ℕ → (((2 · 𝑁) + 1) / (2 · π)) ∈ ℝ)
4342ad2antrr 725 . . 3 (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ (𝑆 mod (2 · π)) = 0) → (((2 · 𝑁) + 1) / (2 · π)) ∈ ℝ)
44 dirker2re 42777 . . 3 (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ ¬ (𝑆 mod (2 · π)) = 0) → ((sin‘((𝑁 + (1 / 2)) · 𝑆)) / ((2 · π) · (sin‘(𝑆 / 2)))) ∈ ℝ)
4543, 44ifclda 4459 . 2 ((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) → if((𝑆 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑆)) / ((2 · π) · (sin‘(𝑆 / 2))))) ∈ ℝ)
4613, 22, 23, 45fvmptd 6753 1 ((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) → ((𝐷𝑁)‘𝑆) = if((𝑆 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑆)) / ((2 · π) · (sin‘(𝑆 / 2))))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ifcif 4425   class class class wbr 5031   ↦ cmpt 5111  ‘cfv 6325  (class class class)co 7136  ℝcr 10528  0cc0 10529  1c1 10530   + caddc 10532   · cmul 10534   < clt 10667   / cdiv 11289  ℕcn 11628  2c2 11683   mod cmo 13235  sincsin 15412  πcpi 15415 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-inf2 9091  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-iin 4885  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-se 5480  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-isom 6334  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-of 7391  df-om 7564  df-1st 7674  df-2nd 7675  df-supp 7817  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-2o 8089  df-oadd 8092  df-er 8275  df-map 8394  df-pm 8395  df-ixp 8448  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-fsupp 8821  df-fi 8862  df-sup 8893  df-inf 8894  df-oi 8961  df-card 9355  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11629  df-2 11691  df-3 11692  df-4 11693  df-5 11694  df-6 11695  df-7 11696  df-8 11697  df-9 11698  df-n0 11889  df-z 11973  df-dec 12090  df-uz 12235  df-q 12340  df-rp 12381  df-xneg 12498  df-xadd 12499  df-xmul 12500  df-ioo 12733  df-ioc 12734  df-ico 12735  df-icc 12736  df-fz 12889  df-fzo 13032  df-fl 13160  df-mod 13236  df-seq 13368  df-exp 13429  df-fac 13633  df-bc 13662  df-hash 13690  df-shft 14421  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-limsup 14823  df-clim 14840  df-rlim 14841  df-sum 15038  df-ef 15416  df-sin 15418  df-cos 15419  df-pi 15421  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-starv 16575  df-sca 16576  df-vsca 16577  df-ip 16578  df-tset 16579  df-ple 16580  df-ds 16582  df-unif 16583  df-hom 16584  df-cco 16585  df-rest 16691  df-topn 16692  df-0g 16710  df-gsum 16711  df-topgen 16712  df-pt 16713  df-prds 16716  df-xrs 16770  df-qtop 16775  df-imas 16776  df-xps 16778  df-mre 16852  df-mrc 16853  df-acs 16855  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-submnd 17952  df-mulg 18221  df-cntz 18443  df-cmn 18904  df-psmet 20087  df-xmet 20088  df-met 20089  df-bl 20090  df-mopn 20091  df-fbas 20092  df-fg 20093  df-cnfld 20096  df-top 21509  df-topon 21526  df-topsp 21548  df-bases 21561  df-cld 21634  df-ntr 21635  df-cls 21636  df-nei 21713  df-lp 21751  df-perf 21752  df-cn 21842  df-cnp 21843  df-haus 21930  df-tx 22177  df-hmeo 22370  df-fil 22461  df-fm 22553  df-flim 22554  df-flf 22555  df-xms 22937  df-ms 22938  df-tms 22939  df-cncf 23493  df-limc 24479  df-dv 24480 This theorem is referenced by:  dirkerre  42780  dirkerper  42781  dirkerf  42782  dirkercncflem2  42789  fourierdlem66  42857
 Copyright terms: Public domain W3C validator