Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dirkerval2 Structured version   Visualization version   GIF version

Theorem dirkerval2 46054
Description: The Nth Dirichlet Kernel evaluated at a specific point 𝑆. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
dirkerval2.1 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
Assertion
Ref Expression
dirkerval2 ((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) → ((𝐷𝑁)‘𝑆) = if((𝑆 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑆)) / ((2 · π) · (sin‘(𝑆 / 2))))))
Distinct variable groups:   𝑁,𝑠   𝑛,𝑠
Allowed substitution hints:   𝐷(𝑛,𝑠)   𝑆(𝑛,𝑠)   𝑁(𝑛)

Proof of Theorem dirkerval2
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 dirkerval2.1 . . . . 5 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
21dirkerval 46051 . . . 4 (𝑁 ∈ ℕ → (𝐷𝑁) = (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
3 oveq1 7421 . . . . . . 7 (𝑠 = 𝑡 → (𝑠 mod (2 · π)) = (𝑡 mod (2 · π)))
43eqeq1d 2736 . . . . . 6 (𝑠 = 𝑡 → ((𝑠 mod (2 · π)) = 0 ↔ (𝑡 mod (2 · π)) = 0))
5 oveq2 7422 . . . . . . . 8 (𝑠 = 𝑡 → ((𝑁 + (1 / 2)) · 𝑠) = ((𝑁 + (1 / 2)) · 𝑡))
65fveq2d 6891 . . . . . . 7 (𝑠 = 𝑡 → (sin‘((𝑁 + (1 / 2)) · 𝑠)) = (sin‘((𝑁 + (1 / 2)) · 𝑡)))
7 fvoveq1 7437 . . . . . . . 8 (𝑠 = 𝑡 → (sin‘(𝑠 / 2)) = (sin‘(𝑡 / 2)))
87oveq2d 7430 . . . . . . 7 (𝑠 = 𝑡 → ((2 · π) · (sin‘(𝑠 / 2))) = ((2 · π) · (sin‘(𝑡 / 2))))
96, 8oveq12d 7432 . . . . . 6 (𝑠 = 𝑡 → ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))) = ((sin‘((𝑁 + (1 / 2)) · 𝑡)) / ((2 · π) · (sin‘(𝑡 / 2)))))
104, 9ifbieq2d 4534 . . . . 5 (𝑠 = 𝑡 → if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))) = if((𝑡 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑡)) / ((2 · π) · (sin‘(𝑡 / 2))))))
1110cbvmptv 5237 . . . 4 (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))) = (𝑡 ∈ ℝ ↦ if((𝑡 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑡)) / ((2 · π) · (sin‘(𝑡 / 2))))))
122, 11eqtrdi 2785 . . 3 (𝑁 ∈ ℕ → (𝐷𝑁) = (𝑡 ∈ ℝ ↦ if((𝑡 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑡)) / ((2 · π) · (sin‘(𝑡 / 2)))))))
1312adantr 480 . 2 ((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) → (𝐷𝑁) = (𝑡 ∈ ℝ ↦ if((𝑡 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑡)) / ((2 · π) · (sin‘(𝑡 / 2)))))))
14 simpr 484 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ 𝑡 = 𝑆) → 𝑡 = 𝑆)
1514oveq1d 7429 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ 𝑡 = 𝑆) → (𝑡 mod (2 · π)) = (𝑆 mod (2 · π)))
1615eqeq1d 2736 . . 3 (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ 𝑡 = 𝑆) → ((𝑡 mod (2 · π)) = 0 ↔ (𝑆 mod (2 · π)) = 0))
1714oveq2d 7430 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ 𝑡 = 𝑆) → ((𝑁 + (1 / 2)) · 𝑡) = ((𝑁 + (1 / 2)) · 𝑆))
1817fveq2d 6891 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ 𝑡 = 𝑆) → (sin‘((𝑁 + (1 / 2)) · 𝑡)) = (sin‘((𝑁 + (1 / 2)) · 𝑆)))
1914fvoveq1d 7436 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ 𝑡 = 𝑆) → (sin‘(𝑡 / 2)) = (sin‘(𝑆 / 2)))
2019oveq2d 7430 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ 𝑡 = 𝑆) → ((2 · π) · (sin‘(𝑡 / 2))) = ((2 · π) · (sin‘(𝑆 / 2))))
2118, 20oveq12d 7432 . . 3 (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ 𝑡 = 𝑆) → ((sin‘((𝑁 + (1 / 2)) · 𝑡)) / ((2 · π) · (sin‘(𝑡 / 2)))) = ((sin‘((𝑁 + (1 / 2)) · 𝑆)) / ((2 · π) · (sin‘(𝑆 / 2)))))
2216, 21ifbieq2d 4534 . 2 (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ 𝑡 = 𝑆) → if((𝑡 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑡)) / ((2 · π) · (sin‘(𝑡 / 2))))) = if((𝑆 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑆)) / ((2 · π) · (sin‘(𝑆 / 2))))))
23 simpr 484 . 2 ((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) → 𝑆 ∈ ℝ)
24 2re 12323 . . . . . . . 8 2 ∈ ℝ
2524a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → 2 ∈ ℝ)
26 nnre 12256 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
2725, 26remulcld 11274 . . . . . 6 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℝ)
28 1red 11245 . . . . . 6 (𝑁 ∈ ℕ → 1 ∈ ℝ)
2927, 28readdcld 11273 . . . . 5 (𝑁 ∈ ℕ → ((2 · 𝑁) + 1) ∈ ℝ)
30 pire 26455 . . . . . . 7 π ∈ ℝ
3130a1i 11 . . . . . 6 (𝑁 ∈ ℕ → π ∈ ℝ)
3225, 31remulcld 11274 . . . . 5 (𝑁 ∈ ℕ → (2 · π) ∈ ℝ)
33 2cnd 12327 . . . . . 6 (𝑁 ∈ ℕ → 2 ∈ ℂ)
3431recnd 11272 . . . . . 6 (𝑁 ∈ ℕ → π ∈ ℂ)
35 2pos 12352 . . . . . . . 8 0 < 2
3635a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → 0 < 2)
3736gt0ne0d 11810 . . . . . 6 (𝑁 ∈ ℕ → 2 ≠ 0)
38 pipos 26457 . . . . . . . 8 0 < π
3938a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → 0 < π)
4039gt0ne0d 11810 . . . . . 6 (𝑁 ∈ ℕ → π ≠ 0)
4133, 34, 37, 40mulne0d 11898 . . . . 5 (𝑁 ∈ ℕ → (2 · π) ≠ 0)
4229, 32, 41redivcld 12078 . . . 4 (𝑁 ∈ ℕ → (((2 · 𝑁) + 1) / (2 · π)) ∈ ℝ)
4342ad2antrr 726 . . 3 (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ (𝑆 mod (2 · π)) = 0) → (((2 · 𝑁) + 1) / (2 · π)) ∈ ℝ)
44 dirker2re 46052 . . 3 (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ ¬ (𝑆 mod (2 · π)) = 0) → ((sin‘((𝑁 + (1 / 2)) · 𝑆)) / ((2 · π) · (sin‘(𝑆 / 2)))) ∈ ℝ)
4543, 44ifclda 4543 . 2 ((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) → if((𝑆 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑆)) / ((2 · π) · (sin‘(𝑆 / 2))))) ∈ ℝ)
4613, 22, 23, 45fvmptd 7004 1 ((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) → ((𝐷𝑁)‘𝑆) = if((𝑆 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑆)) / ((2 · π) · (sin‘(𝑆 / 2))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  ifcif 4507   class class class wbr 5125  cmpt 5207  cfv 6542  (class class class)co 7414  cr 11137  0cc0 11138  1c1 11139   + caddc 11141   · cmul 11143   < clt 11278   / cdiv 11903  cn 12249  2c2 12304   mod cmo 13892  sincsin 16082  πcpi 16085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-inf2 9664  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216  ax-addf 11217
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-tp 4613  df-op 4615  df-uni 4890  df-int 4929  df-iun 4975  df-iin 4976  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-se 5620  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7680  df-om 7871  df-1st 7997  df-2nd 7998  df-supp 8169  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-1o 8489  df-2o 8490  df-er 8728  df-map 8851  df-pm 8852  df-ixp 8921  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-fsupp 9385  df-fi 9434  df-sup 9465  df-inf 9466  df-oi 9533  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-div 11904  df-nn 12250  df-2 12312  df-3 12313  df-4 12314  df-5 12315  df-6 12316  df-7 12317  df-8 12318  df-9 12319  df-n0 12511  df-z 12598  df-dec 12718  df-uz 12862  df-q 12974  df-rp 13018  df-xneg 13137  df-xadd 13138  df-xmul 13139  df-ioo 13374  df-ioc 13375  df-ico 13376  df-icc 13377  df-fz 13531  df-fzo 13678  df-fl 13815  df-mod 13893  df-seq 14026  df-exp 14086  df-fac 14296  df-bc 14325  df-hash 14353  df-shft 15089  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258  df-limsup 15490  df-clim 15507  df-rlim 15508  df-sum 15706  df-ef 16086  df-sin 16088  df-cos 16089  df-pi 16091  df-struct 17167  df-sets 17184  df-slot 17202  df-ndx 17214  df-base 17231  df-ress 17257  df-plusg 17290  df-mulr 17291  df-starv 17292  df-sca 17293  df-vsca 17294  df-ip 17295  df-tset 17296  df-ple 17297  df-ds 17299  df-unif 17300  df-hom 17301  df-cco 17302  df-rest 17443  df-topn 17444  df-0g 17462  df-gsum 17463  df-topgen 17464  df-pt 17465  df-prds 17468  df-xrs 17523  df-qtop 17528  df-imas 17529  df-xps 17531  df-mre 17605  df-mrc 17606  df-acs 17608  df-mgm 18627  df-sgrp 18706  df-mnd 18722  df-submnd 18771  df-mulg 19060  df-cntz 19309  df-cmn 19773  df-psmet 21323  df-xmet 21324  df-met 21325  df-bl 21326  df-mopn 21327  df-fbas 21328  df-fg 21329  df-cnfld 21332  df-top 22867  df-topon 22884  df-topsp 22906  df-bases 22919  df-cld 22992  df-ntr 22993  df-cls 22994  df-nei 23071  df-lp 23109  df-perf 23110  df-cn 23200  df-cnp 23201  df-haus 23288  df-tx 23535  df-hmeo 23728  df-fil 23819  df-fm 23911  df-flim 23912  df-flf 23913  df-xms 24294  df-ms 24295  df-tms 24296  df-cncf 24859  df-limc 25856  df-dv 25857
This theorem is referenced by:  dirkerre  46055  dirkerper  46056  dirkerf  46057  dirkercncflem2  46064  fourierdlem66  46132
  Copyright terms: Public domain W3C validator