Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dirkerval2 Structured version   Visualization version   GIF version

Theorem dirkerval2 46050
Description: The Nth Dirichlet Kernel evaluated at a specific point 𝑆. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
dirkerval2.1 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
Assertion
Ref Expression
dirkerval2 ((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) → ((𝐷𝑁)‘𝑆) = if((𝑆 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑆)) / ((2 · π) · (sin‘(𝑆 / 2))))))
Distinct variable groups:   𝑁,𝑠   𝑛,𝑠
Allowed substitution hints:   𝐷(𝑛,𝑠)   𝑆(𝑛,𝑠)   𝑁(𝑛)

Proof of Theorem dirkerval2
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 dirkerval2.1 . . . . 5 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
21dirkerval 46047 . . . 4 (𝑁 ∈ ℕ → (𝐷𝑁) = (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
3 oveq1 7438 . . . . . . 7 (𝑠 = 𝑡 → (𝑠 mod (2 · π)) = (𝑡 mod (2 · π)))
43eqeq1d 2737 . . . . . 6 (𝑠 = 𝑡 → ((𝑠 mod (2 · π)) = 0 ↔ (𝑡 mod (2 · π)) = 0))
5 oveq2 7439 . . . . . . . 8 (𝑠 = 𝑡 → ((𝑁 + (1 / 2)) · 𝑠) = ((𝑁 + (1 / 2)) · 𝑡))
65fveq2d 6911 . . . . . . 7 (𝑠 = 𝑡 → (sin‘((𝑁 + (1 / 2)) · 𝑠)) = (sin‘((𝑁 + (1 / 2)) · 𝑡)))
7 fvoveq1 7454 . . . . . . . 8 (𝑠 = 𝑡 → (sin‘(𝑠 / 2)) = (sin‘(𝑡 / 2)))
87oveq2d 7447 . . . . . . 7 (𝑠 = 𝑡 → ((2 · π) · (sin‘(𝑠 / 2))) = ((2 · π) · (sin‘(𝑡 / 2))))
96, 8oveq12d 7449 . . . . . 6 (𝑠 = 𝑡 → ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))) = ((sin‘((𝑁 + (1 / 2)) · 𝑡)) / ((2 · π) · (sin‘(𝑡 / 2)))))
104, 9ifbieq2d 4557 . . . . 5 (𝑠 = 𝑡 → if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))) = if((𝑡 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑡)) / ((2 · π) · (sin‘(𝑡 / 2))))))
1110cbvmptv 5261 . . . 4 (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))) = (𝑡 ∈ ℝ ↦ if((𝑡 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑡)) / ((2 · π) · (sin‘(𝑡 / 2))))))
122, 11eqtrdi 2791 . . 3 (𝑁 ∈ ℕ → (𝐷𝑁) = (𝑡 ∈ ℝ ↦ if((𝑡 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑡)) / ((2 · π) · (sin‘(𝑡 / 2)))))))
1312adantr 480 . 2 ((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) → (𝐷𝑁) = (𝑡 ∈ ℝ ↦ if((𝑡 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑡)) / ((2 · π) · (sin‘(𝑡 / 2)))))))
14 simpr 484 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ 𝑡 = 𝑆) → 𝑡 = 𝑆)
1514oveq1d 7446 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ 𝑡 = 𝑆) → (𝑡 mod (2 · π)) = (𝑆 mod (2 · π)))
1615eqeq1d 2737 . . 3 (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ 𝑡 = 𝑆) → ((𝑡 mod (2 · π)) = 0 ↔ (𝑆 mod (2 · π)) = 0))
1714oveq2d 7447 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ 𝑡 = 𝑆) → ((𝑁 + (1 / 2)) · 𝑡) = ((𝑁 + (1 / 2)) · 𝑆))
1817fveq2d 6911 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ 𝑡 = 𝑆) → (sin‘((𝑁 + (1 / 2)) · 𝑡)) = (sin‘((𝑁 + (1 / 2)) · 𝑆)))
1914fvoveq1d 7453 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ 𝑡 = 𝑆) → (sin‘(𝑡 / 2)) = (sin‘(𝑆 / 2)))
2019oveq2d 7447 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ 𝑡 = 𝑆) → ((2 · π) · (sin‘(𝑡 / 2))) = ((2 · π) · (sin‘(𝑆 / 2))))
2118, 20oveq12d 7449 . . 3 (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ 𝑡 = 𝑆) → ((sin‘((𝑁 + (1 / 2)) · 𝑡)) / ((2 · π) · (sin‘(𝑡 / 2)))) = ((sin‘((𝑁 + (1 / 2)) · 𝑆)) / ((2 · π) · (sin‘(𝑆 / 2)))))
2216, 21ifbieq2d 4557 . 2 (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ 𝑡 = 𝑆) → if((𝑡 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑡)) / ((2 · π) · (sin‘(𝑡 / 2))))) = if((𝑆 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑆)) / ((2 · π) · (sin‘(𝑆 / 2))))))
23 simpr 484 . 2 ((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) → 𝑆 ∈ ℝ)
24 2re 12338 . . . . . . . 8 2 ∈ ℝ
2524a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → 2 ∈ ℝ)
26 nnre 12271 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
2725, 26remulcld 11289 . . . . . 6 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℝ)
28 1red 11260 . . . . . 6 (𝑁 ∈ ℕ → 1 ∈ ℝ)
2927, 28readdcld 11288 . . . . 5 (𝑁 ∈ ℕ → ((2 · 𝑁) + 1) ∈ ℝ)
30 pire 26515 . . . . . . 7 π ∈ ℝ
3130a1i 11 . . . . . 6 (𝑁 ∈ ℕ → π ∈ ℝ)
3225, 31remulcld 11289 . . . . 5 (𝑁 ∈ ℕ → (2 · π) ∈ ℝ)
33 2cnd 12342 . . . . . 6 (𝑁 ∈ ℕ → 2 ∈ ℂ)
3431recnd 11287 . . . . . 6 (𝑁 ∈ ℕ → π ∈ ℂ)
35 2pos 12367 . . . . . . . 8 0 < 2
3635a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → 0 < 2)
3736gt0ne0d 11825 . . . . . 6 (𝑁 ∈ ℕ → 2 ≠ 0)
38 pipos 26517 . . . . . . . 8 0 < π
3938a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → 0 < π)
4039gt0ne0d 11825 . . . . . 6 (𝑁 ∈ ℕ → π ≠ 0)
4133, 34, 37, 40mulne0d 11913 . . . . 5 (𝑁 ∈ ℕ → (2 · π) ≠ 0)
4229, 32, 41redivcld 12093 . . . 4 (𝑁 ∈ ℕ → (((2 · 𝑁) + 1) / (2 · π)) ∈ ℝ)
4342ad2antrr 726 . . 3 (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ (𝑆 mod (2 · π)) = 0) → (((2 · 𝑁) + 1) / (2 · π)) ∈ ℝ)
44 dirker2re 46048 . . 3 (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ ¬ (𝑆 mod (2 · π)) = 0) → ((sin‘((𝑁 + (1 / 2)) · 𝑆)) / ((2 · π) · (sin‘(𝑆 / 2)))) ∈ ℝ)
4543, 44ifclda 4566 . 2 ((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) → if((𝑆 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑆)) / ((2 · π) · (sin‘(𝑆 / 2))))) ∈ ℝ)
4613, 22, 23, 45fvmptd 7023 1 ((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) → ((𝐷𝑁)‘𝑆) = if((𝑆 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑆)) / ((2 · π) · (sin‘(𝑆 / 2))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  ifcif 4531   class class class wbr 5148  cmpt 5231  cfv 6563  (class class class)co 7431  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158   < clt 11293   / cdiv 11918  cn 12264  2c2 12319   mod cmo 13906  sincsin 16096  πcpi 16099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-fac 14310  df-bc 14339  df-hash 14367  df-shft 15103  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-limsup 15504  df-clim 15521  df-rlim 15522  df-sum 15720  df-ef 16100  df-sin 16102  df-cos 16103  df-pi 16105  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-cn 23251  df-cnp 23252  df-haus 23339  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-xms 24346  df-ms 24347  df-tms 24348  df-cncf 24918  df-limc 25916  df-dv 25917
This theorem is referenced by:  dirkerre  46051  dirkerper  46052  dirkerf  46053  dirkercncflem2  46060  fourierdlem66  46128
  Copyright terms: Public domain W3C validator