![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > stirlingr | Structured version Visualization version GIF version |
Description: Stirling's approximation formula for π factorial: here convergence is expressed with respect to the standard topology on the reals. The main theorem stirling 44805 is proven for convergence in the topology of complex numbers. The variable π is used to denote convergence with respect to the standard topology on the reals. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
Ref | Expression |
---|---|
stirlingr.1 | β’ π = (π β β0 β¦ ((ββ((2 Β· Ο) Β· π)) Β· ((π / e)βπ))) |
stirlingr.2 | β’ π = (βπ‘β(topGenβran (,))) |
Ref | Expression |
---|---|
stirlingr | β’ (π β β β¦ ((!βπ) / (πβπ)))π 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stirlingr.1 | . . 3 β’ π = (π β β0 β¦ ((ββ((2 Β· Ο) Β· π)) Β· ((π / e)βπ))) | |
2 | 1 | stirling 44805 | . 2 β’ (π β β β¦ ((!βπ) / (πβπ))) β 1 |
3 | stirlingr.2 | . . . 4 β’ π = (βπ‘β(topGenβran (,))) | |
4 | nnuz 12865 | . . . 4 β’ β = (β€β₯β1) | |
5 | 1zzd 12593 | . . . 4 β’ (β€ β 1 β β€) | |
6 | eqid 2733 | . . . . . 6 β’ (π β β β¦ ((!βπ) / (πβπ))) = (π β β β¦ ((!βπ) / (πβπ))) | |
7 | nnnn0 12479 | . . . . . . . 8 β’ (π β β β π β β0) | |
8 | faccl 14243 | . . . . . . . 8 β’ (π β β0 β (!βπ) β β) | |
9 | nnre 12219 | . . . . . . . 8 β’ ((!βπ) β β β (!βπ) β β) | |
10 | 7, 8, 9 | 3syl 18 | . . . . . . 7 β’ (π β β β (!βπ) β β) |
11 | 2re 12286 | . . . . . . . . . . . . . 14 β’ 2 β β | |
12 | 11 | a1i 11 | . . . . . . . . . . . . 13 β’ (π β β β 2 β β) |
13 | pire 25968 | . . . . . . . . . . . . . 14 β’ Ο β β | |
14 | 13 | a1i 11 | . . . . . . . . . . . . 13 β’ (π β β β Ο β β) |
15 | 12, 14 | remulcld 11244 | . . . . . . . . . . . 12 β’ (π β β β (2 Β· Ο) β β) |
16 | nnre 12219 | . . . . . . . . . . . 12 β’ (π β β β π β β) | |
17 | 15, 16 | remulcld 11244 | . . . . . . . . . . 11 β’ (π β β β ((2 Β· Ο) Β· π) β β) |
18 | 0re 11216 | . . . . . . . . . . . . . . 15 β’ 0 β β | |
19 | 18 | a1i 11 | . . . . . . . . . . . . . 14 β’ (π β β β 0 β β) |
20 | 2pos 12315 | . . . . . . . . . . . . . . 15 β’ 0 < 2 | |
21 | 20 | a1i 11 | . . . . . . . . . . . . . 14 β’ (π β β β 0 < 2) |
22 | 19, 12, 21 | ltled 11362 | . . . . . . . . . . . . 13 β’ (π β β β 0 β€ 2) |
23 | pipos 25970 | . . . . . . . . . . . . . . 15 β’ 0 < Ο | |
24 | 18, 13, 23 | ltleii 11337 | . . . . . . . . . . . . . 14 β’ 0 β€ Ο |
25 | 24 | a1i 11 | . . . . . . . . . . . . 13 β’ (π β β β 0 β€ Ο) |
26 | 12, 14, 22, 25 | mulge0d 11791 | . . . . . . . . . . . 12 β’ (π β β β 0 β€ (2 Β· Ο)) |
27 | 7 | nn0ge0d 12535 | . . . . . . . . . . . 12 β’ (π β β β 0 β€ π) |
28 | 15, 16, 26, 27 | mulge0d 11791 | . . . . . . . . . . 11 β’ (π β β β 0 β€ ((2 Β· Ο) Β· π)) |
29 | 17, 28 | resqrtcld 15364 | . . . . . . . . . 10 β’ (π β β β (ββ((2 Β· Ο) Β· π)) β β) |
30 | ere 16032 | . . . . . . . . . . . . 13 β’ e β β | |
31 | 30 | a1i 11 | . . . . . . . . . . . 12 β’ (π β β β e β β) |
32 | epos 16150 | . . . . . . . . . . . . . 14 β’ 0 < e | |
33 | 18, 32 | gtneii 11326 | . . . . . . . . . . . . 13 β’ e β 0 |
34 | 33 | a1i 11 | . . . . . . . . . . . 12 β’ (π β β β e β 0) |
35 | 16, 31, 34 | redivcld 12042 | . . . . . . . . . . 11 β’ (π β β β (π / e) β β) |
36 | 35, 7 | reexpcld 14128 | . . . . . . . . . 10 β’ (π β β β ((π / e)βπ) β β) |
37 | 29, 36 | remulcld 11244 | . . . . . . . . 9 β’ (π β β β ((ββ((2 Β· Ο) Β· π)) Β· ((π / e)βπ)) β β) |
38 | 1 | fvmpt2 7010 | . . . . . . . . 9 β’ ((π β β0 β§ ((ββ((2 Β· Ο) Β· π)) Β· ((π / e)βπ)) β β) β (πβπ) = ((ββ((2 Β· Ο) Β· π)) Β· ((π / e)βπ))) |
39 | 7, 37, 38 | syl2anc 585 | . . . . . . . 8 β’ (π β β β (πβπ) = ((ββ((2 Β· Ο) Β· π)) Β· ((π / e)βπ))) |
40 | 2rp 12979 | . . . . . . . . . . . . 13 β’ 2 β β+ | |
41 | 40 | a1i 11 | . . . . . . . . . . . 12 β’ (π β β β 2 β β+) |
42 | pirp 25971 | . . . . . . . . . . . . 13 β’ Ο β β+ | |
43 | 42 | a1i 11 | . . . . . . . . . . . 12 β’ (π β β β Ο β β+) |
44 | 41, 43 | rpmulcld 13032 | . . . . . . . . . . 11 β’ (π β β β (2 Β· Ο) β β+) |
45 | nnrp 12985 | . . . . . . . . . . 11 β’ (π β β β π β β+) | |
46 | 44, 45 | rpmulcld 13032 | . . . . . . . . . 10 β’ (π β β β ((2 Β· Ο) Β· π) β β+) |
47 | 46 | rpsqrtcld 15358 | . . . . . . . . 9 β’ (π β β β (ββ((2 Β· Ο) Β· π)) β β+) |
48 | epr 16151 | . . . . . . . . . . . 12 β’ e β β+ | |
49 | 48 | a1i 11 | . . . . . . . . . . 11 β’ (π β β β e β β+) |
50 | 45, 49 | rpdivcld 13033 | . . . . . . . . . 10 β’ (π β β β (π / e) β β+) |
51 | nnz 12579 | . . . . . . . . . 10 β’ (π β β β π β β€) | |
52 | 50, 51 | rpexpcld 14210 | . . . . . . . . 9 β’ (π β β β ((π / e)βπ) β β+) |
53 | 47, 52 | rpmulcld 13032 | . . . . . . . 8 β’ (π β β β ((ββ((2 Β· Ο) Β· π)) Β· ((π / e)βπ)) β β+) |
54 | 39, 53 | eqeltrd 2834 | . . . . . . 7 β’ (π β β β (πβπ) β β+) |
55 | 10, 54 | rerpdivcld 13047 | . . . . . 6 β’ (π β β β ((!βπ) / (πβπ)) β β) |
56 | 6, 55 | fmpti 7112 | . . . . 5 β’ (π β β β¦ ((!βπ) / (πβπ))):ββΆβ |
57 | 56 | a1i 11 | . . . 4 β’ (β€ β (π β β β¦ ((!βπ) / (πβπ))):ββΆβ) |
58 | 3, 4, 5, 57 | climreeq 44329 | . . 3 β’ (β€ β ((π β β β¦ ((!βπ) / (πβπ)))π 1 β (π β β β¦ ((!βπ) / (πβπ))) β 1)) |
59 | 58 | mptru 1549 | . 2 β’ ((π β β β¦ ((!βπ) / (πβπ)))π 1 β (π β β β¦ ((!βπ) / (πβπ))) β 1) |
60 | 2, 59 | mpbir 230 | 1 β’ (π β β β¦ ((!βπ) / (πβπ)))π 1 |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 = wceq 1542 β€wtru 1543 β wcel 2107 β wne 2941 class class class wbr 5149 β¦ cmpt 5232 ran crn 5678 βΆwf 6540 βcfv 6544 (class class class)co 7409 βcr 11109 0cc0 11110 1c1 11111 Β· cmul 11115 < clt 11248 β€ cle 11249 / cdiv 11871 βcn 12212 2c2 12267 β0cn0 12472 β+crp 12974 (,)cioo 13324 βcexp 14027 !cfa 14233 βcsqrt 15180 β cli 15428 eceu 16006 Οcpi 16010 topGenctg 17383 βπ‘clm 22730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-inf2 9636 ax-cc 10430 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 ax-addf 11189 ax-mulf 11190 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-symdif 4243 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-disj 5115 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-of 7670 df-ofr 7671 df-om 7856 df-1st 7975 df-2nd 7976 df-supp 8147 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-2o 8467 df-oadd 8470 df-omul 8471 df-er 8703 df-map 8822 df-pm 8823 df-ixp 8892 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-fsupp 9362 df-fi 9406 df-sup 9437 df-inf 9438 df-oi 9505 df-dju 9896 df-card 9934 df-acn 9937 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-xnn0 12545 df-z 12559 df-dec 12678 df-uz 12823 df-q 12933 df-rp 12975 df-xneg 13092 df-xadd 13093 df-xmul 13094 df-ioo 13328 df-ioc 13329 df-ico 13330 df-icc 13331 df-fz 13485 df-fzo 13628 df-fl 13757 df-mod 13835 df-seq 13967 df-exp 14028 df-fac 14234 df-bc 14263 df-hash 14291 df-shft 15014 df-cj 15046 df-re 15047 df-im 15048 df-sqrt 15182 df-abs 15183 df-limsup 15415 df-clim 15432 df-rlim 15433 df-sum 15633 df-ef 16011 df-e 16012 df-sin 16013 df-cos 16014 df-tan 16015 df-pi 16016 df-dvds 16198 df-struct 17080 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-plusg 17210 df-mulr 17211 df-starv 17212 df-sca 17213 df-vsca 17214 df-ip 17215 df-tset 17216 df-ple 17217 df-ds 17219 df-unif 17220 df-hom 17221 df-cco 17222 df-rest 17368 df-topn 17369 df-0g 17387 df-gsum 17388 df-topgen 17389 df-pt 17390 df-prds 17393 df-xrs 17448 df-qtop 17453 df-imas 17454 df-xps 17456 df-mre 17530 df-mrc 17531 df-acs 17533 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-submnd 18672 df-mulg 18951 df-cntz 19181 df-cmn 19650 df-psmet 20936 df-xmet 20937 df-met 20938 df-bl 20939 df-mopn 20940 df-fbas 20941 df-fg 20942 df-cnfld 20945 df-top 22396 df-topon 22413 df-topsp 22435 df-bases 22449 df-cld 22523 df-ntr 22524 df-cls 22525 df-nei 22602 df-lp 22640 df-perf 22641 df-cn 22731 df-cnp 22732 df-lm 22733 df-haus 22819 df-cmp 22891 df-tx 23066 df-hmeo 23259 df-fil 23350 df-fm 23442 df-flim 23443 df-flf 23444 df-xms 23826 df-ms 23827 df-tms 23828 df-cncf 24394 df-ovol 24981 df-vol 24982 df-mbf 25136 df-itg1 25137 df-itg2 25138 df-ibl 25139 df-itg 25140 df-0p 25187 df-limc 25383 df-dv 25384 df-ulm 25889 df-log 26065 df-cxp 26066 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |