Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > stirlingr | Structured version Visualization version GIF version |
Description: Stirling's approximation formula for 𝑛 factorial: here convergence is expressed with respect to the standard topology on the reals. The main theorem stirling 43520 is proven for convergence in the topology of complex numbers. The variable 𝑅 is used to denote convergence with respect to the standard topology on the reals. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
Ref | Expression |
---|---|
stirlingr.1 | ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛))) |
stirlingr.2 | ⊢ 𝑅 = (⇝𝑡‘(topGen‘ran (,))) |
Ref | Expression |
---|---|
stirlingr | ⊢ (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆‘𝑛)))𝑅1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stirlingr.1 | . . 3 ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛))) | |
2 | 1 | stirling 43520 | . 2 ⊢ (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆‘𝑛))) ⇝ 1 |
3 | stirlingr.2 | . . . 4 ⊢ 𝑅 = (⇝𝑡‘(topGen‘ran (,))) | |
4 | nnuz 12550 | . . . 4 ⊢ ℕ = (ℤ≥‘1) | |
5 | 1zzd 12281 | . . . 4 ⊢ (⊤ → 1 ∈ ℤ) | |
6 | eqid 2738 | . . . . . 6 ⊢ (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆‘𝑛))) = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆‘𝑛))) | |
7 | nnnn0 12170 | . . . . . . . 8 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0) | |
8 | faccl 13925 | . . . . . . . 8 ⊢ (𝑛 ∈ ℕ0 → (!‘𝑛) ∈ ℕ) | |
9 | nnre 11910 | . . . . . . . 8 ⊢ ((!‘𝑛) ∈ ℕ → (!‘𝑛) ∈ ℝ) | |
10 | 7, 8, 9 | 3syl 18 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → (!‘𝑛) ∈ ℝ) |
11 | 2re 11977 | . . . . . . . . . . . . . 14 ⊢ 2 ∈ ℝ | |
12 | 11 | a1i 11 | . . . . . . . . . . . . 13 ⊢ (𝑛 ∈ ℕ → 2 ∈ ℝ) |
13 | pire 25520 | . . . . . . . . . . . . . 14 ⊢ π ∈ ℝ | |
14 | 13 | a1i 11 | . . . . . . . . . . . . 13 ⊢ (𝑛 ∈ ℕ → π ∈ ℝ) |
15 | 12, 14 | remulcld 10936 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℕ → (2 · π) ∈ ℝ) |
16 | nnre 11910 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℝ) | |
17 | 15, 16 | remulcld 10936 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ℕ → ((2 · π) · 𝑛) ∈ ℝ) |
18 | 0re 10908 | . . . . . . . . . . . . . . 15 ⊢ 0 ∈ ℝ | |
19 | 18 | a1i 11 | . . . . . . . . . . . . . 14 ⊢ (𝑛 ∈ ℕ → 0 ∈ ℝ) |
20 | 2pos 12006 | . . . . . . . . . . . . . . 15 ⊢ 0 < 2 | |
21 | 20 | a1i 11 | . . . . . . . . . . . . . 14 ⊢ (𝑛 ∈ ℕ → 0 < 2) |
22 | 19, 12, 21 | ltled 11053 | . . . . . . . . . . . . 13 ⊢ (𝑛 ∈ ℕ → 0 ≤ 2) |
23 | pipos 25522 | . . . . . . . . . . . . . . 15 ⊢ 0 < π | |
24 | 18, 13, 23 | ltleii 11028 | . . . . . . . . . . . . . 14 ⊢ 0 ≤ π |
25 | 24 | a1i 11 | . . . . . . . . . . . . 13 ⊢ (𝑛 ∈ ℕ → 0 ≤ π) |
26 | 12, 14, 22, 25 | mulge0d 11482 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℕ → 0 ≤ (2 · π)) |
27 | 7 | nn0ge0d 12226 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℕ → 0 ≤ 𝑛) |
28 | 15, 16, 26, 27 | mulge0d 11482 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ℕ → 0 ≤ ((2 · π) · 𝑛)) |
29 | 17, 28 | resqrtcld 15057 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℕ → (√‘((2 · π) · 𝑛)) ∈ ℝ) |
30 | ere 15726 | . . . . . . . . . . . . 13 ⊢ e ∈ ℝ | |
31 | 30 | a1i 11 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℕ → e ∈ ℝ) |
32 | epos 15844 | . . . . . . . . . . . . . 14 ⊢ 0 < e | |
33 | 18, 32 | gtneii 11017 | . . . . . . . . . . . . 13 ⊢ e ≠ 0 |
34 | 33 | a1i 11 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℕ → e ≠ 0) |
35 | 16, 31, 34 | redivcld 11733 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ℕ → (𝑛 / e) ∈ ℝ) |
36 | 35, 7 | reexpcld 13809 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℕ → ((𝑛 / e)↑𝑛) ∈ ℝ) |
37 | 29, 36 | remulcld 10936 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℕ → ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛)) ∈ ℝ) |
38 | 1 | fvmpt2 6868 | . . . . . . . . 9 ⊢ ((𝑛 ∈ ℕ0 ∧ ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛)) ∈ ℝ) → (𝑆‘𝑛) = ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛))) |
39 | 7, 37, 38 | syl2anc 583 | . . . . . . . 8 ⊢ (𝑛 ∈ ℕ → (𝑆‘𝑛) = ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛))) |
40 | 2rp 12664 | . . . . . . . . . . . . 13 ⊢ 2 ∈ ℝ+ | |
41 | 40 | a1i 11 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℕ → 2 ∈ ℝ+) |
42 | pirp 25523 | . . . . . . . . . . . . 13 ⊢ π ∈ ℝ+ | |
43 | 42 | a1i 11 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℕ → π ∈ ℝ+) |
44 | 41, 43 | rpmulcld 12717 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ℕ → (2 · π) ∈ ℝ+) |
45 | nnrp 12670 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+) | |
46 | 44, 45 | rpmulcld 12717 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℕ → ((2 · π) · 𝑛) ∈ ℝ+) |
47 | 46 | rpsqrtcld 15051 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℕ → (√‘((2 · π) · 𝑛)) ∈ ℝ+) |
48 | epr 15845 | . . . . . . . . . . . 12 ⊢ e ∈ ℝ+ | |
49 | 48 | a1i 11 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ℕ → e ∈ ℝ+) |
50 | 45, 49 | rpdivcld 12718 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℕ → (𝑛 / e) ∈ ℝ+) |
51 | nnz 12272 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℤ) | |
52 | 50, 51 | rpexpcld 13890 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℕ → ((𝑛 / e)↑𝑛) ∈ ℝ+) |
53 | 47, 52 | rpmulcld 12717 | . . . . . . . 8 ⊢ (𝑛 ∈ ℕ → ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛)) ∈ ℝ+) |
54 | 39, 53 | eqeltrd 2839 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → (𝑆‘𝑛) ∈ ℝ+) |
55 | 10, 54 | rerpdivcld 12732 | . . . . . 6 ⊢ (𝑛 ∈ ℕ → ((!‘𝑛) / (𝑆‘𝑛)) ∈ ℝ) |
56 | 6, 55 | fmpti 6968 | . . . . 5 ⊢ (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆‘𝑛))):ℕ⟶ℝ |
57 | 56 | a1i 11 | . . . 4 ⊢ (⊤ → (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆‘𝑛))):ℕ⟶ℝ) |
58 | 3, 4, 5, 57 | climreeq 43044 | . . 3 ⊢ (⊤ → ((𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆‘𝑛)))𝑅1 ↔ (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆‘𝑛))) ⇝ 1)) |
59 | 58 | mptru 1546 | . 2 ⊢ ((𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆‘𝑛)))𝑅1 ↔ (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆‘𝑛))) ⇝ 1) |
60 | 2, 59 | mpbir 230 | 1 ⊢ (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆‘𝑛)))𝑅1 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ⊤wtru 1540 ∈ wcel 2108 ≠ wne 2942 class class class wbr 5070 ↦ cmpt 5153 ran crn 5581 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 0cc0 10802 1c1 10803 · cmul 10807 < clt 10940 ≤ cle 10941 / cdiv 11562 ℕcn 11903 2c2 11958 ℕ0cn0 12163 ℝ+crp 12659 (,)cioo 13008 ↑cexp 13710 !cfa 13915 √csqrt 14872 ⇝ cli 15121 eceu 15700 πcpi 15704 topGenctg 17065 ⇝𝑡clm 22285 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cc 10122 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-symdif 4173 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-disj 5036 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-ofr 7512 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-oadd 8271 df-omul 8272 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-dju 9590 df-card 9628 df-acn 9631 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-xnn0 12236 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-ioc 13013 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-fac 13916 df-bc 13945 df-hash 13973 df-shft 14706 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-limsup 15108 df-clim 15125 df-rlim 15126 df-sum 15326 df-ef 15705 df-e 15706 df-sin 15707 df-cos 15708 df-tan 15709 df-pi 15710 df-dvds 15892 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-mulg 18616 df-cntz 18838 df-cmn 19303 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-fbas 20507 df-fg 20508 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-nei 22157 df-lp 22195 df-perf 22196 df-cn 22286 df-cnp 22287 df-lm 22288 df-haus 22374 df-cmp 22446 df-tx 22621 df-hmeo 22814 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-xms 23381 df-ms 23382 df-tms 23383 df-cncf 23947 df-ovol 24533 df-vol 24534 df-mbf 24688 df-itg1 24689 df-itg2 24690 df-ibl 24691 df-itg 24692 df-0p 24739 df-limc 24935 df-dv 24936 df-ulm 25441 df-log 25617 df-cxp 25618 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |