Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlingr Structured version   Visualization version   GIF version

Theorem stirlingr 46071
Description: Stirling's approximation formula for 𝑛 factorial: here convergence is expressed with respect to the standard topology on the reals. The main theorem stirling 46070 is proven for convergence in the topology of complex numbers. The variable 𝑅 is used to denote convergence with respect to the standard topology on the reals. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
stirlingr.1 𝑆 = (𝑛 ∈ ℕ0 ↦ ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛)))
stirlingr.2 𝑅 = (⇝𝑡‘(topGen‘ran (,)))
Assertion
Ref Expression
stirlingr (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆𝑛)))𝑅1

Proof of Theorem stirlingr
StepHypRef Expression
1 stirlingr.1 . . 3 𝑆 = (𝑛 ∈ ℕ0 ↦ ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛)))
21stirling 46070 . 2 (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆𝑛))) ⇝ 1
3 stirlingr.2 . . . 4 𝑅 = (⇝𝑡‘(topGen‘ran (,)))
4 nnuz 12778 . . . 4 ℕ = (ℤ‘1)
5 1zzd 12506 . . . 4 (⊤ → 1 ∈ ℤ)
6 eqid 2729 . . . . . 6 (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆𝑛))) = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆𝑛)))
7 nnnn0 12391 . . . . . . . 8 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
8 faccl 14190 . . . . . . . 8 (𝑛 ∈ ℕ0 → (!‘𝑛) ∈ ℕ)
9 nnre 12135 . . . . . . . 8 ((!‘𝑛) ∈ ℕ → (!‘𝑛) ∈ ℝ)
107, 8, 93syl 18 . . . . . . 7 (𝑛 ∈ ℕ → (!‘𝑛) ∈ ℝ)
11 2re 12202 . . . . . . . . . . . . . 14 2 ∈ ℝ
1211a1i 11 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 2 ∈ ℝ)
13 pire 26364 . . . . . . . . . . . . . 14 π ∈ ℝ
1413a1i 11 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → π ∈ ℝ)
1512, 14remulcld 11145 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (2 · π) ∈ ℝ)
16 nnre 12135 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
1715, 16remulcld 11145 . . . . . . . . . . 11 (𝑛 ∈ ℕ → ((2 · π) · 𝑛) ∈ ℝ)
18 0re 11117 . . . . . . . . . . . . . . 15 0 ∈ ℝ
1918a1i 11 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 0 ∈ ℝ)
20 2pos 12231 . . . . . . . . . . . . . . 15 0 < 2
2120a1i 11 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 0 < 2)
2219, 12, 21ltled 11264 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 0 ≤ 2)
23 pipos 26366 . . . . . . . . . . . . . . 15 0 < π
2418, 13, 23ltleii 11239 . . . . . . . . . . . . . 14 0 ≤ π
2524a1i 11 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 0 ≤ π)
2612, 14, 22, 25mulge0d 11697 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 0 ≤ (2 · π))
277nn0ge0d 12448 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 0 ≤ 𝑛)
2815, 16, 26, 27mulge0d 11697 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 0 ≤ ((2 · π) · 𝑛))
2917, 28resqrtcld 15325 . . . . . . . . . 10 (𝑛 ∈ ℕ → (√‘((2 · π) · 𝑛)) ∈ ℝ)
30 ere 15996 . . . . . . . . . . . . 13 e ∈ ℝ
3130a1i 11 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → e ∈ ℝ)
32 epos 16116 . . . . . . . . . . . . . 14 0 < e
3318, 32gtneii 11228 . . . . . . . . . . . . 13 e ≠ 0
3433a1i 11 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → e ≠ 0)
3516, 31, 34redivcld 11952 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝑛 / e) ∈ ℝ)
3635, 7reexpcld 14070 . . . . . . . . . 10 (𝑛 ∈ ℕ → ((𝑛 / e)↑𝑛) ∈ ℝ)
3729, 36remulcld 11145 . . . . . . . . 9 (𝑛 ∈ ℕ → ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛)) ∈ ℝ)
381fvmpt2 6941 . . . . . . . . 9 ((𝑛 ∈ ℕ0 ∧ ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛)) ∈ ℝ) → (𝑆𝑛) = ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛)))
397, 37, 38syl2anc 584 . . . . . . . 8 (𝑛 ∈ ℕ → (𝑆𝑛) = ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛)))
40 2rp 12898 . . . . . . . . . . . . 13 2 ∈ ℝ+
4140a1i 11 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 2 ∈ ℝ+)
42 pirp 26368 . . . . . . . . . . . . 13 π ∈ ℝ+
4342a1i 11 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → π ∈ ℝ+)
4441, 43rpmulcld 12953 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (2 · π) ∈ ℝ+)
45 nnrp 12905 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
4644, 45rpmulcld 12953 . . . . . . . . . 10 (𝑛 ∈ ℕ → ((2 · π) · 𝑛) ∈ ℝ+)
4746rpsqrtcld 15319 . . . . . . . . 9 (𝑛 ∈ ℕ → (√‘((2 · π) · 𝑛)) ∈ ℝ+)
48 epr 16117 . . . . . . . . . . . 12 e ∈ ℝ+
4948a1i 11 . . . . . . . . . . 11 (𝑛 ∈ ℕ → e ∈ ℝ+)
5045, 49rpdivcld 12954 . . . . . . . . . 10 (𝑛 ∈ ℕ → (𝑛 / e) ∈ ℝ+)
51 nnz 12492 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
5250, 51rpexpcld 14154 . . . . . . . . 9 (𝑛 ∈ ℕ → ((𝑛 / e)↑𝑛) ∈ ℝ+)
5347, 52rpmulcld 12953 . . . . . . . 8 (𝑛 ∈ ℕ → ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛)) ∈ ℝ+)
5439, 53eqeltrd 2828 . . . . . . 7 (𝑛 ∈ ℕ → (𝑆𝑛) ∈ ℝ+)
5510, 54rerpdivcld 12968 . . . . . 6 (𝑛 ∈ ℕ → ((!‘𝑛) / (𝑆𝑛)) ∈ ℝ)
566, 55fmpti 7046 . . . . 5 (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆𝑛))):ℕ⟶ℝ
5756a1i 11 . . . 4 (⊤ → (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆𝑛))):ℕ⟶ℝ)
583, 4, 5, 57climreeq 45594 . . 3 (⊤ → ((𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆𝑛)))𝑅1 ↔ (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆𝑛))) ⇝ 1))
5958mptru 1547 . 2 ((𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆𝑛)))𝑅1 ↔ (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆𝑛))) ⇝ 1)
602, 59mpbir 231 1 (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆𝑛)))𝑅1
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wtru 1541  wcel 2109  wne 2925   class class class wbr 5092  cmpt 5173  ran crn 5620  wf 6478  cfv 6482  (class class class)co 7349  cr 11008  0cc0 11009  1c1 11010   · cmul 11014   < clt 11149  cle 11150   / cdiv 11777  cn 12128  2c2 12183  0cn0 12384  +crp 12893  (,)cioo 13248  cexp 13968  !cfa 14180  csqrt 15140  cli 15391  eceu 15969  πcpi 15973  topGenctg 17341  𝑡clm 23111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cc 10329  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-symdif 4204  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-disj 5060  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-ofr 7614  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-omul 8393  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-dju 9797  df-card 9835  df-acn 9838  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-xnn0 12458  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-e 15975  df-sin 15976  df-cos 15977  df-tan 15978  df-pi 15979  df-dvds 16164  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-lm 23114  df-haus 23200  df-cmp 23272  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-ovol 25363  df-vol 25364  df-mbf 25518  df-itg1 25519  df-itg2 25520  df-ibl 25521  df-itg 25522  df-0p 25569  df-limc 25765  df-dv 25766  df-ulm 26284  df-log 26463  df-cxp 26464
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator