![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > stirlingr | Structured version Visualization version GIF version |
Description: Stirling's approximation formula for 𝑛 factorial: here convergence is expressed with respect to the standard topology on the reals. The main theorem stirling 46045 is proven for convergence in the topology of complex numbers. The variable 𝑅 is used to denote convergence with respect to the standard topology on the reals. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
Ref | Expression |
---|---|
stirlingr.1 | ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛))) |
stirlingr.2 | ⊢ 𝑅 = (⇝𝑡‘(topGen‘ran (,))) |
Ref | Expression |
---|---|
stirlingr | ⊢ (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆‘𝑛)))𝑅1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stirlingr.1 | . . 3 ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛))) | |
2 | 1 | stirling 46045 | . 2 ⊢ (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆‘𝑛))) ⇝ 1 |
3 | stirlingr.2 | . . . 4 ⊢ 𝑅 = (⇝𝑡‘(topGen‘ran (,))) | |
4 | nnuz 12919 | . . . 4 ⊢ ℕ = (ℤ≥‘1) | |
5 | 1zzd 12646 | . . . 4 ⊢ (⊤ → 1 ∈ ℤ) | |
6 | eqid 2735 | . . . . . 6 ⊢ (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆‘𝑛))) = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆‘𝑛))) | |
7 | nnnn0 12531 | . . . . . . . 8 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0) | |
8 | faccl 14319 | . . . . . . . 8 ⊢ (𝑛 ∈ ℕ0 → (!‘𝑛) ∈ ℕ) | |
9 | nnre 12271 | . . . . . . . 8 ⊢ ((!‘𝑛) ∈ ℕ → (!‘𝑛) ∈ ℝ) | |
10 | 7, 8, 9 | 3syl 18 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → (!‘𝑛) ∈ ℝ) |
11 | 2re 12338 | . . . . . . . . . . . . . 14 ⊢ 2 ∈ ℝ | |
12 | 11 | a1i 11 | . . . . . . . . . . . . 13 ⊢ (𝑛 ∈ ℕ → 2 ∈ ℝ) |
13 | pire 26515 | . . . . . . . . . . . . . 14 ⊢ π ∈ ℝ | |
14 | 13 | a1i 11 | . . . . . . . . . . . . 13 ⊢ (𝑛 ∈ ℕ → π ∈ ℝ) |
15 | 12, 14 | remulcld 11289 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℕ → (2 · π) ∈ ℝ) |
16 | nnre 12271 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℝ) | |
17 | 15, 16 | remulcld 11289 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ℕ → ((2 · π) · 𝑛) ∈ ℝ) |
18 | 0re 11261 | . . . . . . . . . . . . . . 15 ⊢ 0 ∈ ℝ | |
19 | 18 | a1i 11 | . . . . . . . . . . . . . 14 ⊢ (𝑛 ∈ ℕ → 0 ∈ ℝ) |
20 | 2pos 12367 | . . . . . . . . . . . . . . 15 ⊢ 0 < 2 | |
21 | 20 | a1i 11 | . . . . . . . . . . . . . 14 ⊢ (𝑛 ∈ ℕ → 0 < 2) |
22 | 19, 12, 21 | ltled 11407 | . . . . . . . . . . . . 13 ⊢ (𝑛 ∈ ℕ → 0 ≤ 2) |
23 | pipos 26517 | . . . . . . . . . . . . . . 15 ⊢ 0 < π | |
24 | 18, 13, 23 | ltleii 11382 | . . . . . . . . . . . . . 14 ⊢ 0 ≤ π |
25 | 24 | a1i 11 | . . . . . . . . . . . . 13 ⊢ (𝑛 ∈ ℕ → 0 ≤ π) |
26 | 12, 14, 22, 25 | mulge0d 11838 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℕ → 0 ≤ (2 · π)) |
27 | 7 | nn0ge0d 12588 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℕ → 0 ≤ 𝑛) |
28 | 15, 16, 26, 27 | mulge0d 11838 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ℕ → 0 ≤ ((2 · π) · 𝑛)) |
29 | 17, 28 | resqrtcld 15453 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℕ → (√‘((2 · π) · 𝑛)) ∈ ℝ) |
30 | ere 16122 | . . . . . . . . . . . . 13 ⊢ e ∈ ℝ | |
31 | 30 | a1i 11 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℕ → e ∈ ℝ) |
32 | epos 16240 | . . . . . . . . . . . . . 14 ⊢ 0 < e | |
33 | 18, 32 | gtneii 11371 | . . . . . . . . . . . . 13 ⊢ e ≠ 0 |
34 | 33 | a1i 11 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℕ → e ≠ 0) |
35 | 16, 31, 34 | redivcld 12093 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ℕ → (𝑛 / e) ∈ ℝ) |
36 | 35, 7 | reexpcld 14200 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℕ → ((𝑛 / e)↑𝑛) ∈ ℝ) |
37 | 29, 36 | remulcld 11289 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℕ → ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛)) ∈ ℝ) |
38 | 1 | fvmpt2 7027 | . . . . . . . . 9 ⊢ ((𝑛 ∈ ℕ0 ∧ ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛)) ∈ ℝ) → (𝑆‘𝑛) = ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛))) |
39 | 7, 37, 38 | syl2anc 584 | . . . . . . . 8 ⊢ (𝑛 ∈ ℕ → (𝑆‘𝑛) = ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛))) |
40 | 2rp 13037 | . . . . . . . . . . . . 13 ⊢ 2 ∈ ℝ+ | |
41 | 40 | a1i 11 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℕ → 2 ∈ ℝ+) |
42 | pirp 26518 | . . . . . . . . . . . . 13 ⊢ π ∈ ℝ+ | |
43 | 42 | a1i 11 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℕ → π ∈ ℝ+) |
44 | 41, 43 | rpmulcld 13091 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ℕ → (2 · π) ∈ ℝ+) |
45 | nnrp 13044 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+) | |
46 | 44, 45 | rpmulcld 13091 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℕ → ((2 · π) · 𝑛) ∈ ℝ+) |
47 | 46 | rpsqrtcld 15447 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℕ → (√‘((2 · π) · 𝑛)) ∈ ℝ+) |
48 | epr 16241 | . . . . . . . . . . . 12 ⊢ e ∈ ℝ+ | |
49 | 48 | a1i 11 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ℕ → e ∈ ℝ+) |
50 | 45, 49 | rpdivcld 13092 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℕ → (𝑛 / e) ∈ ℝ+) |
51 | nnz 12632 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℤ) | |
52 | 50, 51 | rpexpcld 14283 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℕ → ((𝑛 / e)↑𝑛) ∈ ℝ+) |
53 | 47, 52 | rpmulcld 13091 | . . . . . . . 8 ⊢ (𝑛 ∈ ℕ → ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛)) ∈ ℝ+) |
54 | 39, 53 | eqeltrd 2839 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → (𝑆‘𝑛) ∈ ℝ+) |
55 | 10, 54 | rerpdivcld 13106 | . . . . . 6 ⊢ (𝑛 ∈ ℕ → ((!‘𝑛) / (𝑆‘𝑛)) ∈ ℝ) |
56 | 6, 55 | fmpti 7132 | . . . . 5 ⊢ (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆‘𝑛))):ℕ⟶ℝ |
57 | 56 | a1i 11 | . . . 4 ⊢ (⊤ → (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆‘𝑛))):ℕ⟶ℝ) |
58 | 3, 4, 5, 57 | climreeq 45569 | . . 3 ⊢ (⊤ → ((𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆‘𝑛)))𝑅1 ↔ (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆‘𝑛))) ⇝ 1)) |
59 | 58 | mptru 1544 | . 2 ⊢ ((𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆‘𝑛)))𝑅1 ↔ (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆‘𝑛))) ⇝ 1) |
60 | 2, 59 | mpbir 231 | 1 ⊢ (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆‘𝑛)))𝑅1 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ⊤wtru 1538 ∈ wcel 2106 ≠ wne 2938 class class class wbr 5148 ↦ cmpt 5231 ran crn 5690 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 ℝcr 11152 0cc0 11153 1c1 11154 · cmul 11158 < clt 11293 ≤ cle 11294 / cdiv 11918 ℕcn 12264 2c2 12319 ℕ0cn0 12524 ℝ+crp 13032 (,)cioo 13384 ↑cexp 14099 !cfa 14309 √csqrt 15269 ⇝ cli 15517 eceu 16095 πcpi 16099 topGenctg 17484 ⇝𝑡clm 23250 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cc 10473 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 ax-addf 11232 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-symdif 4259 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-disj 5116 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-ofr 7698 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-oadd 8509 df-omul 8510 df-er 8744 df-map 8867 df-pm 8868 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-fi 9449 df-sup 9480 df-inf 9481 df-oi 9548 df-dju 9939 df-card 9977 df-acn 9980 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-xnn0 12598 df-z 12612 df-dec 12732 df-uz 12877 df-q 12989 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-ioo 13388 df-ioc 13389 df-ico 13390 df-icc 13391 df-fz 13545 df-fzo 13692 df-fl 13829 df-mod 13907 df-seq 14040 df-exp 14100 df-fac 14310 df-bc 14339 df-hash 14367 df-shft 15103 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-limsup 15504 df-clim 15521 df-rlim 15522 df-sum 15720 df-ef 16100 df-e 16101 df-sin 16102 df-cos 16103 df-tan 16104 df-pi 16105 df-dvds 16288 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-hom 17322 df-cco 17323 df-rest 17469 df-topn 17470 df-0g 17488 df-gsum 17489 df-topgen 17490 df-pt 17491 df-prds 17494 df-xrs 17549 df-qtop 17554 df-imas 17555 df-xps 17557 df-mre 17631 df-mrc 17632 df-acs 17634 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-submnd 18810 df-mulg 19099 df-cntz 19348 df-cmn 19815 df-psmet 21374 df-xmet 21375 df-met 21376 df-bl 21377 df-mopn 21378 df-fbas 21379 df-fg 21380 df-cnfld 21383 df-top 22916 df-topon 22933 df-topsp 22955 df-bases 22969 df-cld 23043 df-ntr 23044 df-cls 23045 df-nei 23122 df-lp 23160 df-perf 23161 df-cn 23251 df-cnp 23252 df-lm 23253 df-haus 23339 df-cmp 23411 df-tx 23586 df-hmeo 23779 df-fil 23870 df-fm 23962 df-flim 23963 df-flf 23964 df-xms 24346 df-ms 24347 df-tms 24348 df-cncf 24918 df-ovol 25513 df-vol 25514 df-mbf 25668 df-itg1 25669 df-itg2 25670 df-ibl 25671 df-itg 25672 df-0p 25719 df-limc 25916 df-dv 25917 df-ulm 26435 df-log 26613 df-cxp 26614 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |