| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > stirlingr | Structured version Visualization version GIF version | ||
| Description: Stirling's approximation formula for 𝑛 factorial: here convergence is expressed with respect to the standard topology on the reals. The main theorem stirling 46118 is proven for convergence in the topology of complex numbers. The variable 𝑅 is used to denote convergence with respect to the standard topology on the reals. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| Ref | Expression |
|---|---|
| stirlingr.1 | ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛))) |
| stirlingr.2 | ⊢ 𝑅 = (⇝𝑡‘(topGen‘ran (,))) |
| Ref | Expression |
|---|---|
| stirlingr | ⊢ (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆‘𝑛)))𝑅1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stirlingr.1 | . . 3 ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛))) | |
| 2 | 1 | stirling 46118 | . 2 ⊢ (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆‘𝑛))) ⇝ 1 |
| 3 | stirlingr.2 | . . . 4 ⊢ 𝑅 = (⇝𝑡‘(topGen‘ran (,))) | |
| 4 | nnuz 12895 | . . . 4 ⊢ ℕ = (ℤ≥‘1) | |
| 5 | 1zzd 12623 | . . . 4 ⊢ (⊤ → 1 ∈ ℤ) | |
| 6 | eqid 2735 | . . . . . 6 ⊢ (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆‘𝑛))) = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆‘𝑛))) | |
| 7 | nnnn0 12508 | . . . . . . . 8 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0) | |
| 8 | faccl 14301 | . . . . . . . 8 ⊢ (𝑛 ∈ ℕ0 → (!‘𝑛) ∈ ℕ) | |
| 9 | nnre 12247 | . . . . . . . 8 ⊢ ((!‘𝑛) ∈ ℕ → (!‘𝑛) ∈ ℝ) | |
| 10 | 7, 8, 9 | 3syl 18 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → (!‘𝑛) ∈ ℝ) |
| 11 | 2re 12314 | . . . . . . . . . . . . . 14 ⊢ 2 ∈ ℝ | |
| 12 | 11 | a1i 11 | . . . . . . . . . . . . 13 ⊢ (𝑛 ∈ ℕ → 2 ∈ ℝ) |
| 13 | pire 26418 | . . . . . . . . . . . . . 14 ⊢ π ∈ ℝ | |
| 14 | 13 | a1i 11 | . . . . . . . . . . . . 13 ⊢ (𝑛 ∈ ℕ → π ∈ ℝ) |
| 15 | 12, 14 | remulcld 11265 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℕ → (2 · π) ∈ ℝ) |
| 16 | nnre 12247 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℝ) | |
| 17 | 15, 16 | remulcld 11265 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ℕ → ((2 · π) · 𝑛) ∈ ℝ) |
| 18 | 0re 11237 | . . . . . . . . . . . . . . 15 ⊢ 0 ∈ ℝ | |
| 19 | 18 | a1i 11 | . . . . . . . . . . . . . 14 ⊢ (𝑛 ∈ ℕ → 0 ∈ ℝ) |
| 20 | 2pos 12343 | . . . . . . . . . . . . . . 15 ⊢ 0 < 2 | |
| 21 | 20 | a1i 11 | . . . . . . . . . . . . . 14 ⊢ (𝑛 ∈ ℕ → 0 < 2) |
| 22 | 19, 12, 21 | ltled 11383 | . . . . . . . . . . . . 13 ⊢ (𝑛 ∈ ℕ → 0 ≤ 2) |
| 23 | pipos 26420 | . . . . . . . . . . . . . . 15 ⊢ 0 < π | |
| 24 | 18, 13, 23 | ltleii 11358 | . . . . . . . . . . . . . 14 ⊢ 0 ≤ π |
| 25 | 24 | a1i 11 | . . . . . . . . . . . . 13 ⊢ (𝑛 ∈ ℕ → 0 ≤ π) |
| 26 | 12, 14, 22, 25 | mulge0d 11814 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℕ → 0 ≤ (2 · π)) |
| 27 | 7 | nn0ge0d 12565 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℕ → 0 ≤ 𝑛) |
| 28 | 15, 16, 26, 27 | mulge0d 11814 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ℕ → 0 ≤ ((2 · π) · 𝑛)) |
| 29 | 17, 28 | resqrtcld 15436 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℕ → (√‘((2 · π) · 𝑛)) ∈ ℝ) |
| 30 | ere 16105 | . . . . . . . . . . . . 13 ⊢ e ∈ ℝ | |
| 31 | 30 | a1i 11 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℕ → e ∈ ℝ) |
| 32 | epos 16225 | . . . . . . . . . . . . . 14 ⊢ 0 < e | |
| 33 | 18, 32 | gtneii 11347 | . . . . . . . . . . . . 13 ⊢ e ≠ 0 |
| 34 | 33 | a1i 11 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℕ → e ≠ 0) |
| 35 | 16, 31, 34 | redivcld 12069 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ℕ → (𝑛 / e) ∈ ℝ) |
| 36 | 35, 7 | reexpcld 14181 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℕ → ((𝑛 / e)↑𝑛) ∈ ℝ) |
| 37 | 29, 36 | remulcld 11265 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℕ → ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛)) ∈ ℝ) |
| 38 | 1 | fvmpt2 6997 | . . . . . . . . 9 ⊢ ((𝑛 ∈ ℕ0 ∧ ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛)) ∈ ℝ) → (𝑆‘𝑛) = ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛))) |
| 39 | 7, 37, 38 | syl2anc 584 | . . . . . . . 8 ⊢ (𝑛 ∈ ℕ → (𝑆‘𝑛) = ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛))) |
| 40 | 2rp 13013 | . . . . . . . . . . . . 13 ⊢ 2 ∈ ℝ+ | |
| 41 | 40 | a1i 11 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℕ → 2 ∈ ℝ+) |
| 42 | pirp 26422 | . . . . . . . . . . . . 13 ⊢ π ∈ ℝ+ | |
| 43 | 42 | a1i 11 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℕ → π ∈ ℝ+) |
| 44 | 41, 43 | rpmulcld 13067 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ℕ → (2 · π) ∈ ℝ+) |
| 45 | nnrp 13020 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+) | |
| 46 | 44, 45 | rpmulcld 13067 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℕ → ((2 · π) · 𝑛) ∈ ℝ+) |
| 47 | 46 | rpsqrtcld 15430 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℕ → (√‘((2 · π) · 𝑛)) ∈ ℝ+) |
| 48 | epr 16226 | . . . . . . . . . . . 12 ⊢ e ∈ ℝ+ | |
| 49 | 48 | a1i 11 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ℕ → e ∈ ℝ+) |
| 50 | 45, 49 | rpdivcld 13068 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℕ → (𝑛 / e) ∈ ℝ+) |
| 51 | nnz 12609 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℤ) | |
| 52 | 50, 51 | rpexpcld 14265 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℕ → ((𝑛 / e)↑𝑛) ∈ ℝ+) |
| 53 | 47, 52 | rpmulcld 13067 | . . . . . . . 8 ⊢ (𝑛 ∈ ℕ → ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛)) ∈ ℝ+) |
| 54 | 39, 53 | eqeltrd 2834 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → (𝑆‘𝑛) ∈ ℝ+) |
| 55 | 10, 54 | rerpdivcld 13082 | . . . . . 6 ⊢ (𝑛 ∈ ℕ → ((!‘𝑛) / (𝑆‘𝑛)) ∈ ℝ) |
| 56 | 6, 55 | fmpti 7102 | . . . . 5 ⊢ (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆‘𝑛))):ℕ⟶ℝ |
| 57 | 56 | a1i 11 | . . . 4 ⊢ (⊤ → (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆‘𝑛))):ℕ⟶ℝ) |
| 58 | 3, 4, 5, 57 | climreeq 45642 | . . 3 ⊢ (⊤ → ((𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆‘𝑛)))𝑅1 ↔ (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆‘𝑛))) ⇝ 1)) |
| 59 | 58 | mptru 1547 | . 2 ⊢ ((𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆‘𝑛)))𝑅1 ↔ (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆‘𝑛))) ⇝ 1) |
| 60 | 2, 59 | mpbir 231 | 1 ⊢ (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆‘𝑛)))𝑅1 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ⊤wtru 1541 ∈ wcel 2108 ≠ wne 2932 class class class wbr 5119 ↦ cmpt 5201 ran crn 5655 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ℝcr 11128 0cc0 11129 1c1 11130 · cmul 11134 < clt 11269 ≤ cle 11270 / cdiv 11894 ℕcn 12240 2c2 12295 ℕ0cn0 12501 ℝ+crp 13008 (,)cioo 13362 ↑cexp 14079 !cfa 14291 √csqrt 15252 ⇝ cli 15500 eceu 16078 πcpi 16082 topGenctg 17451 ⇝𝑡clm 23164 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cc 10449 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 ax-addf 11208 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-symdif 4228 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-disj 5087 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-ofr 7672 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-oadd 8484 df-omul 8485 df-er 8719 df-map 8842 df-pm 8843 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-fi 9423 df-sup 9454 df-inf 9455 df-oi 9524 df-dju 9915 df-card 9953 df-acn 9956 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-xnn0 12575 df-z 12589 df-dec 12709 df-uz 12853 df-q 12965 df-rp 13009 df-xneg 13128 df-xadd 13129 df-xmul 13130 df-ioo 13366 df-ioc 13367 df-ico 13368 df-icc 13369 df-fz 13525 df-fzo 13672 df-fl 13809 df-mod 13887 df-seq 14020 df-exp 14080 df-fac 14292 df-bc 14321 df-hash 14349 df-shft 15086 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-limsup 15487 df-clim 15504 df-rlim 15505 df-sum 15703 df-ef 16083 df-e 16084 df-sin 16085 df-cos 16086 df-tan 16087 df-pi 16088 df-dvds 16273 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-starv 17286 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-unif 17294 df-hom 17295 df-cco 17296 df-rest 17436 df-topn 17437 df-0g 17455 df-gsum 17456 df-topgen 17457 df-pt 17458 df-prds 17461 df-xrs 17516 df-qtop 17521 df-imas 17522 df-xps 17524 df-mre 17598 df-mrc 17599 df-acs 17601 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-submnd 18762 df-mulg 19051 df-cntz 19300 df-cmn 19763 df-psmet 21307 df-xmet 21308 df-met 21309 df-bl 21310 df-mopn 21311 df-fbas 21312 df-fg 21313 df-cnfld 21316 df-top 22832 df-topon 22849 df-topsp 22871 df-bases 22884 df-cld 22957 df-ntr 22958 df-cls 22959 df-nei 23036 df-lp 23074 df-perf 23075 df-cn 23165 df-cnp 23166 df-lm 23167 df-haus 23253 df-cmp 23325 df-tx 23500 df-hmeo 23693 df-fil 23784 df-fm 23876 df-flim 23877 df-flf 23878 df-xms 24259 df-ms 24260 df-tms 24261 df-cncf 24822 df-ovol 25417 df-vol 25418 df-mbf 25572 df-itg1 25573 df-itg2 25574 df-ibl 25575 df-itg 25576 df-0p 25623 df-limc 25819 df-dv 25820 df-ulm 26338 df-log 26517 df-cxp 26518 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |