HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdslj1i Structured version   Visualization version   GIF version

Theorem mdslj1i 32291
Description: Join preservation of the one-to-one onto mapping between the two sublattices in Lemma 1.3 of [MaedaMaeda] p. 2. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
mdslle1.1 𝐴C
mdslle1.2 𝐵C
mdslle1.3 𝐶C
mdslle1.4 𝐷C
Assertion
Ref Expression
mdslj1i (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴 ⊆ (𝐶𝐷) ∧ (𝐶 𝐷) ⊆ (𝐴 𝐵))) → ((𝐶 𝐷) ∩ 𝐵) = ((𝐶𝐵) ∨ (𝐷𝐵)))

Proof of Theorem mdslj1i
StepHypRef Expression
1 ssin 4184 . . . . 5 ((𝐴𝐶𝐴𝐷) ↔ 𝐴 ⊆ (𝐶𝐷))
21bicomi 224 . . . 4 (𝐴 ⊆ (𝐶𝐷) ↔ (𝐴𝐶𝐴𝐷))
3 mdslle1.3 . . . . . 6 𝐶C
4 mdslle1.4 . . . . . 6 𝐷C
5 mdslle1.1 . . . . . . 7 𝐴C
6 mdslle1.2 . . . . . . 7 𝐵C
75, 6chjcli 31429 . . . . . 6 (𝐴 𝐵) ∈ C
83, 4, 7chlubi 31443 . . . . 5 ((𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)) ↔ (𝐶 𝐷) ⊆ (𝐴 𝐵))
98bicomi 224 . . . 4 ((𝐶 𝐷) ⊆ (𝐴 𝐵) ↔ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))
102, 9anbi12i 628 . . 3 ((𝐴 ⊆ (𝐶𝐷) ∧ (𝐶 𝐷) ⊆ (𝐴 𝐵)) ↔ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))))
11 simpr 484 . . . . . . . . . 10 ((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) → 𝐵 𝑀* 𝐴)
12 simpl 482 . . . . . . . . . 10 ((𝐴𝐶𝐴𝐷) → 𝐴𝐶)
13 simpl 482 . . . . . . . . . 10 ((𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)) → 𝐶 ⊆ (𝐴 𝐵))
145, 6, 33pm3.2i 1340 . . . . . . . . . . 11 (𝐴C𝐵C𝐶C )
15 dmdsl3 32287 . . . . . . . . . . 11 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝑀* 𝐴𝐴𝐶𝐶 ⊆ (𝐴 𝐵))) → ((𝐶𝐵) ∨ 𝐴) = 𝐶)
1614, 15mpan 690 . . . . . . . . . 10 ((𝐵 𝑀* 𝐴𝐴𝐶𝐶 ⊆ (𝐴 𝐵)) → ((𝐶𝐵) ∨ 𝐴) = 𝐶)
1711, 12, 13, 16syl3an 1160 . . . . . . . . 9 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → ((𝐶𝐵) ∨ 𝐴) = 𝐶)
183, 6chincli 31432 . . . . . . . . . . 11 (𝐶𝐵) ∈ C
194, 6chincli 31432 . . . . . . . . . . 11 (𝐷𝐵) ∈ C
2018, 19chub1i 31441 . . . . . . . . . 10 (𝐶𝐵) ⊆ ((𝐶𝐵) ∨ (𝐷𝐵))
2118, 19chjcli 31429 . . . . . . . . . . 11 ((𝐶𝐵) ∨ (𝐷𝐵)) ∈ C
2218, 21, 5chlej1i 31445 . . . . . . . . . 10 ((𝐶𝐵) ⊆ ((𝐶𝐵) ∨ (𝐷𝐵)) → ((𝐶𝐵) ∨ 𝐴) ⊆ (((𝐶𝐵) ∨ (𝐷𝐵)) ∨ 𝐴))
2320, 22mp1i 13 . . . . . . . . 9 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → ((𝐶𝐵) ∨ 𝐴) ⊆ (((𝐶𝐵) ∨ (𝐷𝐵)) ∨ 𝐴))
2417, 23eqsstrrd 3965 . . . . . . . 8 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → 𝐶 ⊆ (((𝐶𝐵) ∨ (𝐷𝐵)) ∨ 𝐴))
25 simpr 484 . . . . . . . . . 10 ((𝐴𝐶𝐴𝐷) → 𝐴𝐷)
26 simpr 484 . . . . . . . . . 10 ((𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)) → 𝐷 ⊆ (𝐴 𝐵))
275, 6, 43pm3.2i 1340 . . . . . . . . . . 11 (𝐴C𝐵C𝐷C )
28 dmdsl3 32287 . . . . . . . . . . 11 (((𝐴C𝐵C𝐷C ) ∧ (𝐵 𝑀* 𝐴𝐴𝐷𝐷 ⊆ (𝐴 𝐵))) → ((𝐷𝐵) ∨ 𝐴) = 𝐷)
2927, 28mpan 690 . . . . . . . . . 10 ((𝐵 𝑀* 𝐴𝐴𝐷𝐷 ⊆ (𝐴 𝐵)) → ((𝐷𝐵) ∨ 𝐴) = 𝐷)
3011, 25, 26, 29syl3an 1160 . . . . . . . . 9 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → ((𝐷𝐵) ∨ 𝐴) = 𝐷)
3119, 18chub2i 31442 . . . . . . . . . 10 (𝐷𝐵) ⊆ ((𝐶𝐵) ∨ (𝐷𝐵))
3219, 21, 5chlej1i 31445 . . . . . . . . . 10 ((𝐷𝐵) ⊆ ((𝐶𝐵) ∨ (𝐷𝐵)) → ((𝐷𝐵) ∨ 𝐴) ⊆ (((𝐶𝐵) ∨ (𝐷𝐵)) ∨ 𝐴))
3331, 32mp1i 13 . . . . . . . . 9 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → ((𝐷𝐵) ∨ 𝐴) ⊆ (((𝐶𝐵) ∨ (𝐷𝐵)) ∨ 𝐴))
3430, 33eqsstrrd 3965 . . . . . . . 8 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → 𝐷 ⊆ (((𝐶𝐵) ∨ (𝐷𝐵)) ∨ 𝐴))
3524, 34jca 511 . . . . . . 7 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → (𝐶 ⊆ (((𝐶𝐵) ∨ (𝐷𝐵)) ∨ 𝐴) ∧ 𝐷 ⊆ (((𝐶𝐵) ∨ (𝐷𝐵)) ∨ 𝐴)))
3621, 5chjcli 31429 . . . . . . . 8 (((𝐶𝐵) ∨ (𝐷𝐵)) ∨ 𝐴) ∈ C
373, 4, 36chlubi 31443 . . . . . . 7 ((𝐶 ⊆ (((𝐶𝐵) ∨ (𝐷𝐵)) ∨ 𝐴) ∧ 𝐷 ⊆ (((𝐶𝐵) ∨ (𝐷𝐵)) ∨ 𝐴)) ↔ (𝐶 𝐷) ⊆ (((𝐶𝐵) ∨ (𝐷𝐵)) ∨ 𝐴))
3835, 37sylib 218 . . . . . 6 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → (𝐶 𝐷) ⊆ (((𝐶𝐵) ∨ (𝐷𝐵)) ∨ 𝐴))
3938ssrind 4189 . . . . 5 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → ((𝐶 𝐷) ∩ 𝐵) ⊆ ((((𝐶𝐵) ∨ (𝐷𝐵)) ∨ 𝐴) ∩ 𝐵))
40 simpl 482 . . . . . 6 ((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) → 𝐴 𝑀 𝐵)
41 ssrin 4187 . . . . . . . 8 (𝐴𝐶 → (𝐴𝐵) ⊆ (𝐶𝐵))
4241, 20sstrdi 3942 . . . . . . 7 (𝐴𝐶 → (𝐴𝐵) ⊆ ((𝐶𝐵) ∨ (𝐷𝐵)))
4342adantr 480 . . . . . 6 ((𝐴𝐶𝐴𝐷) → (𝐴𝐵) ⊆ ((𝐶𝐵) ∨ (𝐷𝐵)))
44 inss2 4183 . . . . . . . 8 (𝐶𝐵) ⊆ 𝐵
45 inss2 4183 . . . . . . . 8 (𝐷𝐵) ⊆ 𝐵
4618, 19, 6chlubi 31443 . . . . . . . . 9 (((𝐶𝐵) ⊆ 𝐵 ∧ (𝐷𝐵) ⊆ 𝐵) ↔ ((𝐶𝐵) ∨ (𝐷𝐵)) ⊆ 𝐵)
4746bicomi 224 . . . . . . . 8 (((𝐶𝐵) ∨ (𝐷𝐵)) ⊆ 𝐵 ↔ ((𝐶𝐵) ⊆ 𝐵 ∧ (𝐷𝐵) ⊆ 𝐵))
4844, 45, 47mpbir2an 711 . . . . . . 7 ((𝐶𝐵) ∨ (𝐷𝐵)) ⊆ 𝐵
4948a1i 11 . . . . . 6 ((𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)) → ((𝐶𝐵) ∨ (𝐷𝐵)) ⊆ 𝐵)
505, 6, 213pm3.2i 1340 . . . . . . 7 (𝐴C𝐵C ∧ ((𝐶𝐵) ∨ (𝐷𝐵)) ∈ C )
51 mdsl3 32288 . . . . . . 7 (((𝐴C𝐵C ∧ ((𝐶𝐵) ∨ (𝐷𝐵)) ∈ C ) ∧ (𝐴 𝑀 𝐵 ∧ (𝐴𝐵) ⊆ ((𝐶𝐵) ∨ (𝐷𝐵)) ∧ ((𝐶𝐵) ∨ (𝐷𝐵)) ⊆ 𝐵)) → ((((𝐶𝐵) ∨ (𝐷𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝐶𝐵) ∨ (𝐷𝐵)))
5250, 51mpan 690 . . . . . 6 ((𝐴 𝑀 𝐵 ∧ (𝐴𝐵) ⊆ ((𝐶𝐵) ∨ (𝐷𝐵)) ∧ ((𝐶𝐵) ∨ (𝐷𝐵)) ⊆ 𝐵) → ((((𝐶𝐵) ∨ (𝐷𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝐶𝐵) ∨ (𝐷𝐵)))
5340, 43, 49, 52syl3an 1160 . . . . 5 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → ((((𝐶𝐵) ∨ (𝐷𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝐶𝐵) ∨ (𝐷𝐵)))
5439, 53sseqtrd 3966 . . . 4 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → ((𝐶 𝐷) ∩ 𝐵) ⊆ ((𝐶𝐵) ∨ (𝐷𝐵)))
55543expb 1120 . . 3 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → ((𝐶 𝐷) ∩ 𝐵) ⊆ ((𝐶𝐵) ∨ (𝐷𝐵)))
5610, 55sylan2b 594 . 2 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴 ⊆ (𝐶𝐷) ∧ (𝐶 𝐷) ⊆ (𝐴 𝐵))) → ((𝐶 𝐷) ∩ 𝐵) ⊆ ((𝐶𝐵) ∨ (𝐷𝐵)))
573, 4, 6lediri 31509 . . 3 ((𝐶𝐵) ∨ (𝐷𝐵)) ⊆ ((𝐶 𝐷) ∩ 𝐵)
5857a1i 11 . 2 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴 ⊆ (𝐶𝐷) ∧ (𝐶 𝐷) ⊆ (𝐴 𝐵))) → ((𝐶𝐵) ∨ (𝐷𝐵)) ⊆ ((𝐶 𝐷) ∩ 𝐵))
5956, 58eqssd 3947 1 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴 ⊆ (𝐶𝐷) ∧ (𝐶 𝐷) ⊆ (𝐴 𝐵))) → ((𝐶 𝐷) ∩ 𝐵) = ((𝐶𝐵) ∨ (𝐷𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  cin 3896  wss 3897   class class class wbr 5086  (class class class)co 7341   C cch 30901   chj 30905   𝑀 cmd 30938   𝑀* cdmd 30939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526  ax-cc 10321  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079  ax-addf 11080  ax-mulf 11081  ax-hilex 30971  ax-hfvadd 30972  ax-hvcom 30973  ax-hvass 30974  ax-hv0cl 30975  ax-hvaddid 30976  ax-hfvmul 30977  ax-hvmulid 30978  ax-hvmulass 30979  ax-hvdistr1 30980  ax-hvdistr2 30981  ax-hvmul0 30982  ax-hfi 31051  ax-his1 31054  ax-his2 31055  ax-his3 31056  ax-his4 31057  ax-hcompl 31174
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-omul 8385  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9827  df-acn 9830  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-q 12842  df-rp 12886  df-xneg 13006  df-xadd 13007  df-xmul 13008  df-ioo 13244  df-ico 13246  df-icc 13247  df-fz 13403  df-fzo 13550  df-fl 13691  df-seq 13904  df-exp 13964  df-hash 14233  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-clim 15390  df-rlim 15391  df-sum 15589  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-starv 17171  df-sca 17172  df-vsca 17173  df-ip 17174  df-tset 17175  df-ple 17176  df-ds 17178  df-unif 17179  df-hom 17180  df-cco 17181  df-rest 17321  df-topn 17322  df-0g 17340  df-gsum 17341  df-topgen 17342  df-pt 17343  df-prds 17346  df-xrs 17401  df-qtop 17406  df-imas 17407  df-xps 17409  df-mre 17483  df-mrc 17484  df-acs 17486  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19224  df-cmn 19689  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-fbas 21283  df-fg 21284  df-cnfld 21287  df-top 22804  df-topon 22821  df-topsp 22843  df-bases 22856  df-cld 22929  df-ntr 22930  df-cls 22931  df-nei 23008  df-cn 23137  df-cnp 23138  df-lm 23139  df-haus 23225  df-tx 23472  df-hmeo 23665  df-fil 23756  df-fm 23848  df-flim 23849  df-flf 23850  df-xms 24230  df-ms 24231  df-tms 24232  df-cfil 25177  df-cau 25178  df-cmet 25179  df-grpo 30465  df-gid 30466  df-ginv 30467  df-gdiv 30468  df-ablo 30517  df-vc 30531  df-nv 30564  df-va 30567  df-ba 30568  df-sm 30569  df-0v 30570  df-vs 30571  df-nmcv 30572  df-ims 30573  df-dip 30673  df-ssp 30694  df-ph 30785  df-cbn 30835  df-hnorm 30940  df-hba 30941  df-hvsub 30943  df-hlim 30944  df-hcau 30945  df-sh 31179  df-ch 31193  df-oc 31224  df-ch0 31225  df-shs 31280  df-chj 31282  df-md 32252  df-dmd 32253
This theorem is referenced by:  mdslmd1lem1  32297  mdslmd1lem2  32298
  Copyright terms: Public domain W3C validator