Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmmeas Structured version   Visualization version   GIF version

Theorem dmmeas 30870
Description: The domain of a measure is a sigma-algebra. (Contributed by Thierry Arnoux, 19-Feb-2018.)
Assertion
Ref Expression
dmmeas (𝑀 ran measures → dom 𝑀 ran sigAlgebra)

Proof of Theorem dmmeas
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isrnmeas 30869 . 2 (𝑀 ran measures → (dom 𝑀 ran sigAlgebra ∧ (𝑀:dom 𝑀⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦)))))
21simpld 490 1 (𝑀 ran measures → dom 𝑀 ran sigAlgebra)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1071   = wceq 1601  wcel 2107  wral 3090  c0 4141  𝒫 cpw 4379   cuni 4673  Disj wdisj 4856   class class class wbr 4888  dom cdm 5357  ran crn 5358  wf 6133  cfv 6137  (class class class)co 6924  ωcom 7345  cdom 8241  0cc0 10274  +∞cpnf 10410  [,]cicc 12495  Σ*cesum 30695  sigAlgebracsiga 30776  measurescmeas 30864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-br 4889  df-opab 4951  df-mpt 4968  df-id 5263  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-fv 6145  df-ov 6927  df-esum 30696  df-meas 30865
This theorem is referenced by:  measbasedom  30871  aean  30913  sibf0  31002  sibff  31004  sibfinima  31007  sibfof  31008  sitgclg  31010
  Copyright terms: Public domain W3C validator