Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmmeas Structured version   Visualization version   GIF version

Theorem dmmeas 34286
Description: The domain of a measure is a sigma-algebra. (Contributed by Thierry Arnoux, 19-Feb-2018.)
Assertion
Ref Expression
dmmeas (𝑀 ran measures → dom 𝑀 ran sigAlgebra)

Proof of Theorem dmmeas
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isrnmeas 34285 . 2 (𝑀 ran measures → (dom 𝑀 ran sigAlgebra ∧ (𝑀:dom 𝑀⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦)))))
21simpld 494 1 (𝑀 ran measures → dom 𝑀 ran sigAlgebra)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  c0 4282  𝒫 cpw 4551   cuni 4860  Disj wdisj 5062   class class class wbr 5095  dom cdm 5621  ran crn 5622  wf 6485  cfv 6489  (class class class)co 7355  ωcom 7805  cdom 8877  0cc0 11017  +∞cpnf 11154  [,]cicc 13255  Σ*cesum 34112  sigAlgebracsiga 34193  measurescmeas 34280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fv 6497  df-ov 7358  df-esum 34113  df-meas 34281
This theorem is referenced by:  measbasedom  34287  aean  34329  sibf0  34419  sibff  34421  sibfinima  34424  sibfof  34425  sitgclg  34427
  Copyright terms: Public domain W3C validator