Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sibff Structured version   Visualization version   GIF version

Theorem sibff 32303
Description: A simple function is a function. (Contributed by Thierry Arnoux, 19-Feb-2018.)
Hypotheses
Ref Expression
sitgval.b 𝐵 = (Base‘𝑊)
sitgval.j 𝐽 = (TopOpen‘𝑊)
sitgval.s 𝑆 = (sigaGen‘𝐽)
sitgval.0 0 = (0g𝑊)
sitgval.x · = ( ·𝑠𝑊)
sitgval.h 𝐻 = (ℝHom‘(Scalar‘𝑊))
sitgval.1 (𝜑𝑊𝑉)
sitgval.2 (𝜑𝑀 ran measures)
sibfmbl.1 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
Assertion
Ref Expression
sibff (𝜑𝐹: dom 𝑀 𝐽)

Proof of Theorem sibff
StepHypRef Expression
1 sitgval.2 . . . 4 (𝜑𝑀 ran measures)
2 dmmeas 32169 . . . 4 (𝑀 ran measures → dom 𝑀 ran sigAlgebra)
31, 2syl 17 . . 3 (𝜑 → dom 𝑀 ran sigAlgebra)
4 sitgval.s . . . 4 𝑆 = (sigaGen‘𝐽)
5 sitgval.j . . . . . 6 𝐽 = (TopOpen‘𝑊)
6 fvexd 6789 . . . . . 6 (𝜑 → (TopOpen‘𝑊) ∈ V)
75, 6eqeltrid 2843 . . . . 5 (𝜑𝐽 ∈ V)
87sgsiga 32110 . . . 4 (𝜑 → (sigaGen‘𝐽) ∈ ran sigAlgebra)
94, 8eqeltrid 2843 . . 3 (𝜑𝑆 ran sigAlgebra)
10 sitgval.b . . . 4 𝐵 = (Base‘𝑊)
11 sitgval.0 . . . 4 0 = (0g𝑊)
12 sitgval.x . . . 4 · = ( ·𝑠𝑊)
13 sitgval.h . . . 4 𝐻 = (ℝHom‘(Scalar‘𝑊))
14 sitgval.1 . . . 4 (𝜑𝑊𝑉)
15 sibfmbl.1 . . . 4 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
1610, 5, 4, 11, 12, 13, 14, 1, 15sibfmbl 32302 . . 3 (𝜑𝐹 ∈ (dom 𝑀MblFnM𝑆))
173, 9, 16mbfmf 32222 . 2 (𝜑𝐹: dom 𝑀 𝑆)
184unieqi 4852 . . . 4 𝑆 = (sigaGen‘𝐽)
19 unisg 32111 . . . . 5 (𝐽 ∈ V → (sigaGen‘𝐽) = 𝐽)
207, 19syl 17 . . . 4 (𝜑 (sigaGen‘𝐽) = 𝐽)
2118, 20eqtrid 2790 . . 3 (𝜑 𝑆 = 𝐽)
2221feq3d 6587 . 2 (𝜑 → (𝐹: dom 𝑀 𝑆𝐹: dom 𝑀 𝐽))
2317, 22mpbid 231 1 (𝜑𝐹: dom 𝑀 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  Vcvv 3432   cuni 4839  dom cdm 5589  ran crn 5590  wf 6429  cfv 6433  (class class class)co 7275  Basecbs 16912  Scalarcsca 16965   ·𝑠 cvsca 16966  TopOpenctopn 17132  0gc0g 17150  ℝHomcrrh 31943  sigAlgebracsiga 32076  sigaGencsigagen 32106  measurescmeas 32163  sitgcsitg 32296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-map 8617  df-esum 31996  df-siga 32077  df-sigagen 32107  df-meas 32164  df-mbfm 32218  df-sitg 32297
This theorem is referenced by:  sibfinima  32306  sibfof  32307  sitgaddlemb  32315  sitmcl  32318
  Copyright terms: Public domain W3C validator