| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sibff | Structured version Visualization version GIF version | ||
| Description: A simple function is a function. (Contributed by Thierry Arnoux, 19-Feb-2018.) |
| Ref | Expression |
|---|---|
| sitgval.b | ⊢ 𝐵 = (Base‘𝑊) |
| sitgval.j | ⊢ 𝐽 = (TopOpen‘𝑊) |
| sitgval.s | ⊢ 𝑆 = (sigaGen‘𝐽) |
| sitgval.0 | ⊢ 0 = (0g‘𝑊) |
| sitgval.x | ⊢ · = ( ·𝑠 ‘𝑊) |
| sitgval.h | ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) |
| sitgval.1 | ⊢ (𝜑 → 𝑊 ∈ 𝑉) |
| sitgval.2 | ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) |
| sibfmbl.1 | ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) |
| Ref | Expression |
|---|---|
| sibff | ⊢ (𝜑 → 𝐹:∪ dom 𝑀⟶∪ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sitgval.2 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) | |
| 2 | dmmeas 34232 | . . . 4 ⊢ (𝑀 ∈ ∪ ran measures → dom 𝑀 ∈ ∪ ran sigAlgebra) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → dom 𝑀 ∈ ∪ ran sigAlgebra) |
| 4 | sitgval.s | . . . 4 ⊢ 𝑆 = (sigaGen‘𝐽) | |
| 5 | sitgval.j | . . . . . 6 ⊢ 𝐽 = (TopOpen‘𝑊) | |
| 6 | fvexd 6891 | . . . . . 6 ⊢ (𝜑 → (TopOpen‘𝑊) ∈ V) | |
| 7 | 5, 6 | eqeltrid 2838 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ V) |
| 8 | 7 | sgsiga 34173 | . . . 4 ⊢ (𝜑 → (sigaGen‘𝐽) ∈ ∪ ran sigAlgebra) |
| 9 | 4, 8 | eqeltrid 2838 | . . 3 ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) |
| 10 | sitgval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
| 11 | sitgval.0 | . . . 4 ⊢ 0 = (0g‘𝑊) | |
| 12 | sitgval.x | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 13 | sitgval.h | . . . 4 ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) | |
| 14 | sitgval.1 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝑉) | |
| 15 | sibfmbl.1 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) | |
| 16 | 10, 5, 4, 11, 12, 13, 14, 1, 15 | sibfmbl 34367 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (dom 𝑀MblFnM𝑆)) |
| 17 | 3, 9, 16 | mbfmf 34285 | . 2 ⊢ (𝜑 → 𝐹:∪ dom 𝑀⟶∪ 𝑆) |
| 18 | 4 | unieqi 4895 | . . . 4 ⊢ ∪ 𝑆 = ∪ (sigaGen‘𝐽) |
| 19 | unisg 34174 | . . . . 5 ⊢ (𝐽 ∈ V → ∪ (sigaGen‘𝐽) = ∪ 𝐽) | |
| 20 | 7, 19 | syl 17 | . . . 4 ⊢ (𝜑 → ∪ (sigaGen‘𝐽) = ∪ 𝐽) |
| 21 | 18, 20 | eqtrid 2782 | . . 3 ⊢ (𝜑 → ∪ 𝑆 = ∪ 𝐽) |
| 22 | 21 | feq3d 6693 | . 2 ⊢ (𝜑 → (𝐹:∪ dom 𝑀⟶∪ 𝑆 ↔ 𝐹:∪ dom 𝑀⟶∪ 𝐽)) |
| 23 | 17, 22 | mpbid 232 | 1 ⊢ (𝜑 → 𝐹:∪ dom 𝑀⟶∪ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∪ cuni 4883 dom cdm 5654 ran crn 5655 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 Scalarcsca 17274 ·𝑠 cvsca 17275 TopOpenctopn 17435 0gc0g 17453 ℝHomcrrh 34024 sigAlgebracsiga 34139 sigaGencsigagen 34169 measurescmeas 34226 sitgcsitg 34361 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-map 8842 df-esum 34059 df-siga 34140 df-sigagen 34170 df-meas 34227 df-mbfm 34281 df-sitg 34362 |
| This theorem is referenced by: sibfinima 34371 sibfof 34372 sitgaddlemb 34380 sitmcl 34383 |
| Copyright terms: Public domain | W3C validator |