![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sibff | Structured version Visualization version GIF version |
Description: A simple function is a function. (Contributed by Thierry Arnoux, 19-Feb-2018.) |
Ref | Expression |
---|---|
sitgval.b | ⊢ 𝐵 = (Base‘𝑊) |
sitgval.j | ⊢ 𝐽 = (TopOpen‘𝑊) |
sitgval.s | ⊢ 𝑆 = (sigaGen‘𝐽) |
sitgval.0 | ⊢ 0 = (0g‘𝑊) |
sitgval.x | ⊢ · = ( ·𝑠 ‘𝑊) |
sitgval.h | ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) |
sitgval.1 | ⊢ (𝜑 → 𝑊 ∈ 𝑉) |
sitgval.2 | ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) |
sibfmbl.1 | ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) |
Ref | Expression |
---|---|
sibff | ⊢ (𝜑 → 𝐹:∪ dom 𝑀⟶∪ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sitgval.2 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) | |
2 | dmmeas 31077 | . . . 4 ⊢ (𝑀 ∈ ∪ ran measures → dom 𝑀 ∈ ∪ ran sigAlgebra) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → dom 𝑀 ∈ ∪ ran sigAlgebra) |
4 | sitgval.s | . . . 4 ⊢ 𝑆 = (sigaGen‘𝐽) | |
5 | sitgval.j | . . . . . 6 ⊢ 𝐽 = (TopOpen‘𝑊) | |
6 | fvexd 6553 | . . . . . 6 ⊢ (𝜑 → (TopOpen‘𝑊) ∈ V) | |
7 | 5, 6 | syl5eqel 2887 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ V) |
8 | 7 | sgsiga 31018 | . . . 4 ⊢ (𝜑 → (sigaGen‘𝐽) ∈ ∪ ran sigAlgebra) |
9 | 4, 8 | syl5eqel 2887 | . . 3 ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) |
10 | sitgval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
11 | sitgval.0 | . . . 4 ⊢ 0 = (0g‘𝑊) | |
12 | sitgval.x | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
13 | sitgval.h | . . . 4 ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) | |
14 | sitgval.1 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝑉) | |
15 | sibfmbl.1 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) | |
16 | 10, 5, 4, 11, 12, 13, 14, 1, 15 | sibfmbl 31210 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (dom 𝑀MblFnM𝑆)) |
17 | 3, 9, 16 | mbfmf 31130 | . 2 ⊢ (𝜑 → 𝐹:∪ dom 𝑀⟶∪ 𝑆) |
18 | 4 | unieqi 4754 | . . . 4 ⊢ ∪ 𝑆 = ∪ (sigaGen‘𝐽) |
19 | unisg 31019 | . . . . 5 ⊢ (𝐽 ∈ V → ∪ (sigaGen‘𝐽) = ∪ 𝐽) | |
20 | 7, 19 | syl 17 | . . . 4 ⊢ (𝜑 → ∪ (sigaGen‘𝐽) = ∪ 𝐽) |
21 | 18, 20 | syl5eq 2843 | . . 3 ⊢ (𝜑 → ∪ 𝑆 = ∪ 𝐽) |
22 | 21 | feq3d 6369 | . 2 ⊢ (𝜑 → (𝐹:∪ dom 𝑀⟶∪ 𝑆 ↔ 𝐹:∪ dom 𝑀⟶∪ 𝐽)) |
23 | 17, 22 | mpbid 233 | 1 ⊢ (𝜑 → 𝐹:∪ dom 𝑀⟶∪ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1522 ∈ wcel 2081 Vcvv 3437 ∪ cuni 4745 dom cdm 5443 ran crn 5444 ⟶wf 6221 ‘cfv 6225 (class class class)co 7016 Basecbs 16312 Scalarcsca 16397 ·𝑠 cvsca 16398 TopOpenctopn 16524 0gc0g 16542 ℝHomcrrh 30851 sigAlgebracsiga 30984 sigaGencsigagen 31014 measurescmeas 31071 sitgcsitg 31204 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5081 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-fal 1535 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rex 3111 df-reu 3112 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-op 4479 df-uni 4746 df-int 4783 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-id 5348 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-ov 7019 df-oprab 7020 df-mpo 7021 df-1st 7545 df-2nd 7546 df-map 8258 df-esum 30904 df-siga 30985 df-sigagen 31015 df-meas 31072 df-mbfm 31126 df-sitg 31205 |
This theorem is referenced by: sibfinima 31214 sibfof 31215 sitgaddlemb 31223 sitmcl 31226 |
Copyright terms: Public domain | W3C validator |