| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sibff | Structured version Visualization version GIF version | ||
| Description: A simple function is a function. (Contributed by Thierry Arnoux, 19-Feb-2018.) |
| Ref | Expression |
|---|---|
| sitgval.b | ⊢ 𝐵 = (Base‘𝑊) |
| sitgval.j | ⊢ 𝐽 = (TopOpen‘𝑊) |
| sitgval.s | ⊢ 𝑆 = (sigaGen‘𝐽) |
| sitgval.0 | ⊢ 0 = (0g‘𝑊) |
| sitgval.x | ⊢ · = ( ·𝑠 ‘𝑊) |
| sitgval.h | ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) |
| sitgval.1 | ⊢ (𝜑 → 𝑊 ∈ 𝑉) |
| sitgval.2 | ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) |
| sibfmbl.1 | ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) |
| Ref | Expression |
|---|---|
| sibff | ⊢ (𝜑 → 𝐹:∪ dom 𝑀⟶∪ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sitgval.2 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) | |
| 2 | dmmeas 34198 | . . . 4 ⊢ (𝑀 ∈ ∪ ran measures → dom 𝑀 ∈ ∪ ran sigAlgebra) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → dom 𝑀 ∈ ∪ ran sigAlgebra) |
| 4 | sitgval.s | . . . 4 ⊢ 𝑆 = (sigaGen‘𝐽) | |
| 5 | sitgval.j | . . . . . 6 ⊢ 𝐽 = (TopOpen‘𝑊) | |
| 6 | fvexd 6876 | . . . . . 6 ⊢ (𝜑 → (TopOpen‘𝑊) ∈ V) | |
| 7 | 5, 6 | eqeltrid 2833 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ V) |
| 8 | 7 | sgsiga 34139 | . . . 4 ⊢ (𝜑 → (sigaGen‘𝐽) ∈ ∪ ran sigAlgebra) |
| 9 | 4, 8 | eqeltrid 2833 | . . 3 ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) |
| 10 | sitgval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
| 11 | sitgval.0 | . . . 4 ⊢ 0 = (0g‘𝑊) | |
| 12 | sitgval.x | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 13 | sitgval.h | . . . 4 ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) | |
| 14 | sitgval.1 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝑉) | |
| 15 | sibfmbl.1 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) | |
| 16 | 10, 5, 4, 11, 12, 13, 14, 1, 15 | sibfmbl 34333 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (dom 𝑀MblFnM𝑆)) |
| 17 | 3, 9, 16 | mbfmf 34251 | . 2 ⊢ (𝜑 → 𝐹:∪ dom 𝑀⟶∪ 𝑆) |
| 18 | 4 | unieqi 4886 | . . . 4 ⊢ ∪ 𝑆 = ∪ (sigaGen‘𝐽) |
| 19 | unisg 34140 | . . . . 5 ⊢ (𝐽 ∈ V → ∪ (sigaGen‘𝐽) = ∪ 𝐽) | |
| 20 | 7, 19 | syl 17 | . . . 4 ⊢ (𝜑 → ∪ (sigaGen‘𝐽) = ∪ 𝐽) |
| 21 | 18, 20 | eqtrid 2777 | . . 3 ⊢ (𝜑 → ∪ 𝑆 = ∪ 𝐽) |
| 22 | 21 | feq3d 6676 | . 2 ⊢ (𝜑 → (𝐹:∪ dom 𝑀⟶∪ 𝑆 ↔ 𝐹:∪ dom 𝑀⟶∪ 𝐽)) |
| 23 | 17, 22 | mpbid 232 | 1 ⊢ (𝜑 → 𝐹:∪ dom 𝑀⟶∪ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∪ cuni 4874 dom cdm 5641 ran crn 5642 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 Scalarcsca 17230 ·𝑠 cvsca 17231 TopOpenctopn 17391 0gc0g 17409 ℝHomcrrh 33990 sigAlgebracsiga 34105 sigaGencsigagen 34135 measurescmeas 34192 sitgcsitg 34327 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-map 8804 df-esum 34025 df-siga 34106 df-sigagen 34136 df-meas 34193 df-mbfm 34247 df-sitg 34328 |
| This theorem is referenced by: sibfinima 34337 sibfof 34338 sitgaddlemb 34346 sitmcl 34349 |
| Copyright terms: Public domain | W3C validator |