Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sibff Structured version   Visualization version   GIF version

Theorem sibff 33323
Description: A simple function is a function. (Contributed by Thierry Arnoux, 19-Feb-2018.)
Hypotheses
Ref Expression
sitgval.b 𝐡 = (Baseβ€˜π‘Š)
sitgval.j 𝐽 = (TopOpenβ€˜π‘Š)
sitgval.s 𝑆 = (sigaGenβ€˜π½)
sitgval.0 0 = (0gβ€˜π‘Š)
sitgval.x Β· = ( ·𝑠 β€˜π‘Š)
sitgval.h 𝐻 = (ℝHomβ€˜(Scalarβ€˜π‘Š))
sitgval.1 (πœ‘ β†’ π‘Š ∈ 𝑉)
sitgval.2 (πœ‘ β†’ 𝑀 ∈ βˆͺ ran measures)
sibfmbl.1 (πœ‘ β†’ 𝐹 ∈ dom (π‘Šsitg𝑀))
Assertion
Ref Expression
sibff (πœ‘ β†’ 𝐹:βˆͺ dom π‘€βŸΆβˆͺ 𝐽)

Proof of Theorem sibff
StepHypRef Expression
1 sitgval.2 . . . 4 (πœ‘ β†’ 𝑀 ∈ βˆͺ ran measures)
2 dmmeas 33187 . . . 4 (𝑀 ∈ βˆͺ ran measures β†’ dom 𝑀 ∈ βˆͺ ran sigAlgebra)
31, 2syl 17 . . 3 (πœ‘ β†’ dom 𝑀 ∈ βˆͺ ran sigAlgebra)
4 sitgval.s . . . 4 𝑆 = (sigaGenβ€˜π½)
5 sitgval.j . . . . . 6 𝐽 = (TopOpenβ€˜π‘Š)
6 fvexd 6903 . . . . . 6 (πœ‘ β†’ (TopOpenβ€˜π‘Š) ∈ V)
75, 6eqeltrid 2837 . . . . 5 (πœ‘ β†’ 𝐽 ∈ V)
87sgsiga 33128 . . . 4 (πœ‘ β†’ (sigaGenβ€˜π½) ∈ βˆͺ ran sigAlgebra)
94, 8eqeltrid 2837 . . 3 (πœ‘ β†’ 𝑆 ∈ βˆͺ ran sigAlgebra)
10 sitgval.b . . . 4 𝐡 = (Baseβ€˜π‘Š)
11 sitgval.0 . . . 4 0 = (0gβ€˜π‘Š)
12 sitgval.x . . . 4 Β· = ( ·𝑠 β€˜π‘Š)
13 sitgval.h . . . 4 𝐻 = (ℝHomβ€˜(Scalarβ€˜π‘Š))
14 sitgval.1 . . . 4 (πœ‘ β†’ π‘Š ∈ 𝑉)
15 sibfmbl.1 . . . 4 (πœ‘ β†’ 𝐹 ∈ dom (π‘Šsitg𝑀))
1610, 5, 4, 11, 12, 13, 14, 1, 15sibfmbl 33322 . . 3 (πœ‘ β†’ 𝐹 ∈ (dom 𝑀MblFnM𝑆))
173, 9, 16mbfmf 33240 . 2 (πœ‘ β†’ 𝐹:βˆͺ dom π‘€βŸΆβˆͺ 𝑆)
184unieqi 4920 . . . 4 βˆͺ 𝑆 = βˆͺ (sigaGenβ€˜π½)
19 unisg 33129 . . . . 5 (𝐽 ∈ V β†’ βˆͺ (sigaGenβ€˜π½) = βˆͺ 𝐽)
207, 19syl 17 . . . 4 (πœ‘ β†’ βˆͺ (sigaGenβ€˜π½) = βˆͺ 𝐽)
2118, 20eqtrid 2784 . . 3 (πœ‘ β†’ βˆͺ 𝑆 = βˆͺ 𝐽)
2221feq3d 6701 . 2 (πœ‘ β†’ (𝐹:βˆͺ dom π‘€βŸΆβˆͺ 𝑆 ↔ 𝐹:βˆͺ dom π‘€βŸΆβˆͺ 𝐽))
2317, 22mpbid 231 1 (πœ‘ β†’ 𝐹:βˆͺ dom π‘€βŸΆβˆͺ 𝐽)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  Vcvv 3474  βˆͺ cuni 4907  dom cdm 5675  ran crn 5676  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  Scalarcsca 17196   ·𝑠 cvsca 17197  TopOpenctopn 17363  0gc0g 17381  β„Homcrrh 32961  sigAlgebracsiga 33094  sigaGencsigagen 33124  measurescmeas 33181  sitgcsitg 33316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-map 8818  df-esum 33014  df-siga 33095  df-sigagen 33125  df-meas 33182  df-mbfm 33236  df-sitg 33317
This theorem is referenced by:  sibfinima  33326  sibfof  33327  sitgaddlemb  33335  sitmcl  33338
  Copyright terms: Public domain W3C validator