| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sibff | Structured version Visualization version GIF version | ||
| Description: A simple function is a function. (Contributed by Thierry Arnoux, 19-Feb-2018.) |
| Ref | Expression |
|---|---|
| sitgval.b | ⊢ 𝐵 = (Base‘𝑊) |
| sitgval.j | ⊢ 𝐽 = (TopOpen‘𝑊) |
| sitgval.s | ⊢ 𝑆 = (sigaGen‘𝐽) |
| sitgval.0 | ⊢ 0 = (0g‘𝑊) |
| sitgval.x | ⊢ · = ( ·𝑠 ‘𝑊) |
| sitgval.h | ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) |
| sitgval.1 | ⊢ (𝜑 → 𝑊 ∈ 𝑉) |
| sitgval.2 | ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) |
| sibfmbl.1 | ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) |
| Ref | Expression |
|---|---|
| sibff | ⊢ (𝜑 → 𝐹:∪ dom 𝑀⟶∪ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sitgval.2 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) | |
| 2 | dmmeas 34214 | . . . 4 ⊢ (𝑀 ∈ ∪ ran measures → dom 𝑀 ∈ ∪ ran sigAlgebra) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → dom 𝑀 ∈ ∪ ran sigAlgebra) |
| 4 | sitgval.s | . . . 4 ⊢ 𝑆 = (sigaGen‘𝐽) | |
| 5 | sitgval.j | . . . . . 6 ⊢ 𝐽 = (TopOpen‘𝑊) | |
| 6 | fvexd 6837 | . . . . . 6 ⊢ (𝜑 → (TopOpen‘𝑊) ∈ V) | |
| 7 | 5, 6 | eqeltrid 2835 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ V) |
| 8 | 7 | sgsiga 34155 | . . . 4 ⊢ (𝜑 → (sigaGen‘𝐽) ∈ ∪ ran sigAlgebra) |
| 9 | 4, 8 | eqeltrid 2835 | . . 3 ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) |
| 10 | sitgval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
| 11 | sitgval.0 | . . . 4 ⊢ 0 = (0g‘𝑊) | |
| 12 | sitgval.x | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 13 | sitgval.h | . . . 4 ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) | |
| 14 | sitgval.1 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝑉) | |
| 15 | sibfmbl.1 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) | |
| 16 | 10, 5, 4, 11, 12, 13, 14, 1, 15 | sibfmbl 34348 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (dom 𝑀MblFnM𝑆)) |
| 17 | 3, 9, 16 | mbfmf 34267 | . 2 ⊢ (𝜑 → 𝐹:∪ dom 𝑀⟶∪ 𝑆) |
| 18 | 4 | unieqi 4868 | . . . 4 ⊢ ∪ 𝑆 = ∪ (sigaGen‘𝐽) |
| 19 | unisg 34156 | . . . . 5 ⊢ (𝐽 ∈ V → ∪ (sigaGen‘𝐽) = ∪ 𝐽) | |
| 20 | 7, 19 | syl 17 | . . . 4 ⊢ (𝜑 → ∪ (sigaGen‘𝐽) = ∪ 𝐽) |
| 21 | 18, 20 | eqtrid 2778 | . . 3 ⊢ (𝜑 → ∪ 𝑆 = ∪ 𝐽) |
| 22 | 21 | feq3d 6636 | . 2 ⊢ (𝜑 → (𝐹:∪ dom 𝑀⟶∪ 𝑆 ↔ 𝐹:∪ dom 𝑀⟶∪ 𝐽)) |
| 23 | 17, 22 | mpbid 232 | 1 ⊢ (𝜑 → 𝐹:∪ dom 𝑀⟶∪ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∪ cuni 4856 dom cdm 5614 ran crn 5615 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 Scalarcsca 17164 ·𝑠 cvsca 17165 TopOpenctopn 17325 0gc0g 17343 ℝHomcrrh 34006 sigAlgebracsiga 34121 sigaGencsigagen 34151 measurescmeas 34208 sitgcsitg 34342 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-map 8752 df-esum 34041 df-siga 34122 df-sigagen 34152 df-meas 34209 df-mbfm 34263 df-sitg 34343 |
| This theorem is referenced by: sibfinima 34352 sibfof 34353 sitgaddlemb 34361 sitmcl 34364 |
| Copyright terms: Public domain | W3C validator |