Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sibff | Structured version Visualization version GIF version |
Description: A simple function is a function. (Contributed by Thierry Arnoux, 19-Feb-2018.) |
Ref | Expression |
---|---|
sitgval.b | ⊢ 𝐵 = (Base‘𝑊) |
sitgval.j | ⊢ 𝐽 = (TopOpen‘𝑊) |
sitgval.s | ⊢ 𝑆 = (sigaGen‘𝐽) |
sitgval.0 | ⊢ 0 = (0g‘𝑊) |
sitgval.x | ⊢ · = ( ·𝑠 ‘𝑊) |
sitgval.h | ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) |
sitgval.1 | ⊢ (𝜑 → 𝑊 ∈ 𝑉) |
sitgval.2 | ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) |
sibfmbl.1 | ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) |
Ref | Expression |
---|---|
sibff | ⊢ (𝜑 → 𝐹:∪ dom 𝑀⟶∪ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sitgval.2 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) | |
2 | dmmeas 32408 | . . . 4 ⊢ (𝑀 ∈ ∪ ran measures → dom 𝑀 ∈ ∪ ran sigAlgebra) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → dom 𝑀 ∈ ∪ ran sigAlgebra) |
4 | sitgval.s | . . . 4 ⊢ 𝑆 = (sigaGen‘𝐽) | |
5 | sitgval.j | . . . . . 6 ⊢ 𝐽 = (TopOpen‘𝑊) | |
6 | fvexd 6834 | . . . . . 6 ⊢ (𝜑 → (TopOpen‘𝑊) ∈ V) | |
7 | 5, 6 | eqeltrid 2841 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ V) |
8 | 7 | sgsiga 32349 | . . . 4 ⊢ (𝜑 → (sigaGen‘𝐽) ∈ ∪ ran sigAlgebra) |
9 | 4, 8 | eqeltrid 2841 | . . 3 ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) |
10 | sitgval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
11 | sitgval.0 | . . . 4 ⊢ 0 = (0g‘𝑊) | |
12 | sitgval.x | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
13 | sitgval.h | . . . 4 ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) | |
14 | sitgval.1 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝑉) | |
15 | sibfmbl.1 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) | |
16 | 10, 5, 4, 11, 12, 13, 14, 1, 15 | sibfmbl 32543 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (dom 𝑀MblFnM𝑆)) |
17 | 3, 9, 16 | mbfmf 32461 | . 2 ⊢ (𝜑 → 𝐹:∪ dom 𝑀⟶∪ 𝑆) |
18 | 4 | unieqi 4864 | . . . 4 ⊢ ∪ 𝑆 = ∪ (sigaGen‘𝐽) |
19 | unisg 32350 | . . . . 5 ⊢ (𝐽 ∈ V → ∪ (sigaGen‘𝐽) = ∪ 𝐽) | |
20 | 7, 19 | syl 17 | . . . 4 ⊢ (𝜑 → ∪ (sigaGen‘𝐽) = ∪ 𝐽) |
21 | 18, 20 | eqtrid 2788 | . . 3 ⊢ (𝜑 → ∪ 𝑆 = ∪ 𝐽) |
22 | 21 | feq3d 6632 | . 2 ⊢ (𝜑 → (𝐹:∪ dom 𝑀⟶∪ 𝑆 ↔ 𝐹:∪ dom 𝑀⟶∪ 𝐽)) |
23 | 17, 22 | mpbid 231 | 1 ⊢ (𝜑 → 𝐹:∪ dom 𝑀⟶∪ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ∪ cuni 4851 dom cdm 5614 ran crn 5615 ⟶wf 6469 ‘cfv 6473 (class class class)co 7329 Basecbs 17001 Scalarcsca 17054 ·𝑠 cvsca 17055 TopOpenctopn 17221 0gc0g 17239 ℝHomcrrh 32182 sigAlgebracsiga 32315 sigaGencsigagen 32345 measurescmeas 32402 sitgcsitg 32537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-int 4894 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-id 5512 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-ov 7332 df-oprab 7333 df-mpo 7334 df-1st 7891 df-2nd 7892 df-map 8680 df-esum 32235 df-siga 32316 df-sigagen 32346 df-meas 32403 df-mbfm 32457 df-sitg 32538 |
This theorem is referenced by: sibfinima 32547 sibfof 32548 sitgaddlemb 32556 sitmcl 32559 |
Copyright terms: Public domain | W3C validator |