Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sibff Structured version   Visualization version   GIF version

Theorem sibff 31719
 Description: A simple function is a function. (Contributed by Thierry Arnoux, 19-Feb-2018.)
Hypotheses
Ref Expression
sitgval.b 𝐵 = (Base‘𝑊)
sitgval.j 𝐽 = (TopOpen‘𝑊)
sitgval.s 𝑆 = (sigaGen‘𝐽)
sitgval.0 0 = (0g𝑊)
sitgval.x · = ( ·𝑠𝑊)
sitgval.h 𝐻 = (ℝHom‘(Scalar‘𝑊))
sitgval.1 (𝜑𝑊𝑉)
sitgval.2 (𝜑𝑀 ran measures)
sibfmbl.1 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
Assertion
Ref Expression
sibff (𝜑𝐹: dom 𝑀 𝐽)

Proof of Theorem sibff
StepHypRef Expression
1 sitgval.2 . . . 4 (𝜑𝑀 ran measures)
2 dmmeas 31585 . . . 4 (𝑀 ran measures → dom 𝑀 ran sigAlgebra)
31, 2syl 17 . . 3 (𝜑 → dom 𝑀 ran sigAlgebra)
4 sitgval.s . . . 4 𝑆 = (sigaGen‘𝐽)
5 sitgval.j . . . . . 6 𝐽 = (TopOpen‘𝑊)
6 fvexd 6661 . . . . . 6 (𝜑 → (TopOpen‘𝑊) ∈ V)
75, 6eqeltrid 2894 . . . . 5 (𝜑𝐽 ∈ V)
87sgsiga 31526 . . . 4 (𝜑 → (sigaGen‘𝐽) ∈ ran sigAlgebra)
94, 8eqeltrid 2894 . . 3 (𝜑𝑆 ran sigAlgebra)
10 sitgval.b . . . 4 𝐵 = (Base‘𝑊)
11 sitgval.0 . . . 4 0 = (0g𝑊)
12 sitgval.x . . . 4 · = ( ·𝑠𝑊)
13 sitgval.h . . . 4 𝐻 = (ℝHom‘(Scalar‘𝑊))
14 sitgval.1 . . . 4 (𝜑𝑊𝑉)
15 sibfmbl.1 . . . 4 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
1610, 5, 4, 11, 12, 13, 14, 1, 15sibfmbl 31718 . . 3 (𝜑𝐹 ∈ (dom 𝑀MblFnM𝑆))
173, 9, 16mbfmf 31638 . 2 (𝜑𝐹: dom 𝑀 𝑆)
184unieqi 4814 . . . 4 𝑆 = (sigaGen‘𝐽)
19 unisg 31527 . . . . 5 (𝐽 ∈ V → (sigaGen‘𝐽) = 𝐽)
207, 19syl 17 . . . 4 (𝜑 (sigaGen‘𝐽) = 𝐽)
2118, 20syl5eq 2845 . . 3 (𝜑 𝑆 = 𝐽)
2221feq3d 6475 . 2 (𝜑 → (𝐹: dom 𝑀 𝑆𝐹: dom 𝑀 𝐽))
2317, 22mpbid 235 1 (𝜑𝐹: dom 𝑀 𝐽)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2111  Vcvv 3441  ∪ cuni 4801  dom cdm 5520  ran crn 5521  ⟶wf 6321  ‘cfv 6325  (class class class)co 7136  Basecbs 16478  Scalarcsca 16563   ·𝑠 cvsca 16564  TopOpenctopn 16690  0gc0g 16708  ℝHomcrrh 31359  sigAlgebracsiga 31492  sigaGencsigagen 31522  measurescmeas 31579  sitgcsitg 31712 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-id 5426  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-ov 7139  df-oprab 7140  df-mpo 7141  df-1st 7674  df-2nd 7675  df-map 8394  df-esum 31412  df-siga 31493  df-sigagen 31523  df-meas 31580  df-mbfm 31634  df-sitg 31713 This theorem is referenced by:  sibfinima  31722  sibfof  31723  sitgaddlemb  31731  sitmcl  31734
 Copyright terms: Public domain W3C validator