![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sibff | Structured version Visualization version GIF version |
Description: A simple function is a function. (Contributed by Thierry Arnoux, 19-Feb-2018.) |
Ref | Expression |
---|---|
sitgval.b | β’ π΅ = (Baseβπ) |
sitgval.j | β’ π½ = (TopOpenβπ) |
sitgval.s | β’ π = (sigaGenβπ½) |
sitgval.0 | β’ 0 = (0gβπ) |
sitgval.x | β’ Β· = ( Β·π βπ) |
sitgval.h | β’ π» = (βHomβ(Scalarβπ)) |
sitgval.1 | β’ (π β π β π) |
sitgval.2 | β’ (π β π β βͺ ran measures) |
sibfmbl.1 | β’ (π β πΉ β dom (πsitgπ)) |
Ref | Expression |
---|---|
sibff | β’ (π β πΉ:βͺ dom πβΆβͺ π½) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sitgval.2 | . . . 4 β’ (π β π β βͺ ran measures) | |
2 | dmmeas 33187 | . . . 4 β’ (π β βͺ ran measures β dom π β βͺ ran sigAlgebra) | |
3 | 1, 2 | syl 17 | . . 3 β’ (π β dom π β βͺ ran sigAlgebra) |
4 | sitgval.s | . . . 4 β’ π = (sigaGenβπ½) | |
5 | sitgval.j | . . . . . 6 β’ π½ = (TopOpenβπ) | |
6 | fvexd 6903 | . . . . . 6 β’ (π β (TopOpenβπ) β V) | |
7 | 5, 6 | eqeltrid 2837 | . . . . 5 β’ (π β π½ β V) |
8 | 7 | sgsiga 33128 | . . . 4 β’ (π β (sigaGenβπ½) β βͺ ran sigAlgebra) |
9 | 4, 8 | eqeltrid 2837 | . . 3 β’ (π β π β βͺ ran sigAlgebra) |
10 | sitgval.b | . . . 4 β’ π΅ = (Baseβπ) | |
11 | sitgval.0 | . . . 4 β’ 0 = (0gβπ) | |
12 | sitgval.x | . . . 4 β’ Β· = ( Β·π βπ) | |
13 | sitgval.h | . . . 4 β’ π» = (βHomβ(Scalarβπ)) | |
14 | sitgval.1 | . . . 4 β’ (π β π β π) | |
15 | sibfmbl.1 | . . . 4 β’ (π β πΉ β dom (πsitgπ)) | |
16 | 10, 5, 4, 11, 12, 13, 14, 1, 15 | sibfmbl 33322 | . . 3 β’ (π β πΉ β (dom πMblFnMπ)) |
17 | 3, 9, 16 | mbfmf 33240 | . 2 β’ (π β πΉ:βͺ dom πβΆβͺ π) |
18 | 4 | unieqi 4920 | . . . 4 β’ βͺ π = βͺ (sigaGenβπ½) |
19 | unisg 33129 | . . . . 5 β’ (π½ β V β βͺ (sigaGenβπ½) = βͺ π½) | |
20 | 7, 19 | syl 17 | . . . 4 β’ (π β βͺ (sigaGenβπ½) = βͺ π½) |
21 | 18, 20 | eqtrid 2784 | . . 3 β’ (π β βͺ π = βͺ π½) |
22 | 21 | feq3d 6701 | . 2 β’ (π β (πΉ:βͺ dom πβΆβͺ π β πΉ:βͺ dom πβΆβͺ π½)) |
23 | 17, 22 | mpbid 231 | 1 β’ (π β πΉ:βͺ dom πβΆβͺ π½) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 Vcvv 3474 βͺ cuni 4907 dom cdm 5675 ran crn 5676 βΆwf 6536 βcfv 6540 (class class class)co 7405 Basecbs 17140 Scalarcsca 17196 Β·π cvsca 17197 TopOpenctopn 17363 0gc0g 17381 βHomcrrh 32961 sigAlgebracsiga 33094 sigaGencsigagen 33124 measurescmeas 33181 sitgcsitg 33316 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-map 8818 df-esum 33014 df-siga 33095 df-sigagen 33125 df-meas 33182 df-mbfm 33236 df-sitg 33317 |
This theorem is referenced by: sibfinima 33326 sibfof 33327 sitgaddlemb 33335 sitmcl 33338 |
Copyright terms: Public domain | W3C validator |