Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sibff | Structured version Visualization version GIF version |
Description: A simple function is a function. (Contributed by Thierry Arnoux, 19-Feb-2018.) |
Ref | Expression |
---|---|
sitgval.b | ⊢ 𝐵 = (Base‘𝑊) |
sitgval.j | ⊢ 𝐽 = (TopOpen‘𝑊) |
sitgval.s | ⊢ 𝑆 = (sigaGen‘𝐽) |
sitgval.0 | ⊢ 0 = (0g‘𝑊) |
sitgval.x | ⊢ · = ( ·𝑠 ‘𝑊) |
sitgval.h | ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) |
sitgval.1 | ⊢ (𝜑 → 𝑊 ∈ 𝑉) |
sitgval.2 | ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) |
sibfmbl.1 | ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) |
Ref | Expression |
---|---|
sibff | ⊢ (𝜑 → 𝐹:∪ dom 𝑀⟶∪ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sitgval.2 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) | |
2 | dmmeas 32169 | . . . 4 ⊢ (𝑀 ∈ ∪ ran measures → dom 𝑀 ∈ ∪ ran sigAlgebra) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → dom 𝑀 ∈ ∪ ran sigAlgebra) |
4 | sitgval.s | . . . 4 ⊢ 𝑆 = (sigaGen‘𝐽) | |
5 | sitgval.j | . . . . . 6 ⊢ 𝐽 = (TopOpen‘𝑊) | |
6 | fvexd 6789 | . . . . . 6 ⊢ (𝜑 → (TopOpen‘𝑊) ∈ V) | |
7 | 5, 6 | eqeltrid 2843 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ V) |
8 | 7 | sgsiga 32110 | . . . 4 ⊢ (𝜑 → (sigaGen‘𝐽) ∈ ∪ ran sigAlgebra) |
9 | 4, 8 | eqeltrid 2843 | . . 3 ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) |
10 | sitgval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
11 | sitgval.0 | . . . 4 ⊢ 0 = (0g‘𝑊) | |
12 | sitgval.x | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
13 | sitgval.h | . . . 4 ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) | |
14 | sitgval.1 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝑉) | |
15 | sibfmbl.1 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) | |
16 | 10, 5, 4, 11, 12, 13, 14, 1, 15 | sibfmbl 32302 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (dom 𝑀MblFnM𝑆)) |
17 | 3, 9, 16 | mbfmf 32222 | . 2 ⊢ (𝜑 → 𝐹:∪ dom 𝑀⟶∪ 𝑆) |
18 | 4 | unieqi 4852 | . . . 4 ⊢ ∪ 𝑆 = ∪ (sigaGen‘𝐽) |
19 | unisg 32111 | . . . . 5 ⊢ (𝐽 ∈ V → ∪ (sigaGen‘𝐽) = ∪ 𝐽) | |
20 | 7, 19 | syl 17 | . . . 4 ⊢ (𝜑 → ∪ (sigaGen‘𝐽) = ∪ 𝐽) |
21 | 18, 20 | eqtrid 2790 | . . 3 ⊢ (𝜑 → ∪ 𝑆 = ∪ 𝐽) |
22 | 21 | feq3d 6587 | . 2 ⊢ (𝜑 → (𝐹:∪ dom 𝑀⟶∪ 𝑆 ↔ 𝐹:∪ dom 𝑀⟶∪ 𝐽)) |
23 | 17, 22 | mpbid 231 | 1 ⊢ (𝜑 → 𝐹:∪ dom 𝑀⟶∪ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∪ cuni 4839 dom cdm 5589 ran crn 5590 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 Scalarcsca 16965 ·𝑠 cvsca 16966 TopOpenctopn 17132 0gc0g 17150 ℝHomcrrh 31943 sigAlgebracsiga 32076 sigaGencsigagen 32106 measurescmeas 32163 sitgcsitg 32296 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-map 8617 df-esum 31996 df-siga 32077 df-sigagen 32107 df-meas 32164 df-mbfm 32218 df-sitg 32297 |
This theorem is referenced by: sibfinima 32306 sibfof 32307 sitgaddlemb 32315 sitmcl 32318 |
Copyright terms: Public domain | W3C validator |