MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dom2d Structured version   Visualization version   GIF version

Theorem dom2d 8922
Description: A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 20-May-2013.)
Hypotheses
Ref Expression
dom2d.1 (𝜑 → (𝑥𝐴𝐶𝐵))
dom2d.2 (𝜑 → ((𝑥𝐴𝑦𝐴) → (𝐶 = 𝐷𝑥 = 𝑦)))
Assertion
Ref Expression
dom2d (𝜑 → (𝐵𝑅𝐴𝐵))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐷   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑦)   𝑅(𝑥,𝑦)

Proof of Theorem dom2d
StepHypRef Expression
1 dom2d.1 . . 3 (𝜑 → (𝑥𝐴𝐶𝐵))
2 dom2d.2 . . 3 (𝜑 → ((𝑥𝐴𝑦𝐴) → (𝐶 = 𝐷𝑥 = 𝑦)))
31, 2dom2lem 8921 . 2 (𝜑 → (𝑥𝐴𝐶):𝐴1-1𝐵)
4 f1domg 8900 . 2 (𝐵𝑅 → ((𝑥𝐴𝐶):𝐴1-1𝐵𝐴𝐵))
53, 4syl5com 31 1 (𝜑 → (𝐵𝑅𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113   class class class wbr 5093  cmpt 5174  1-1wf1 6483  cdom 8873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-dom 8877
This theorem is referenced by:  dom2  8924  fineqvlem  9157  fseqdom  9924  fin1a2lem9  10306  iundom2g  10438  canthwe  10549  prmreclem2  16831  prmreclem3  16832  sylow1lem4  19515  aannenlem1  26264  derangenlem  35236  fphpd  42934  pellexlem3  42949  unxpwdom3  43213
  Copyright terms: Public domain W3C validator