| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dom2d | Structured version Visualization version GIF version | ||
| Description: A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 20-May-2013.) |
| Ref | Expression |
|---|---|
| dom2d.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)) |
| dom2d.2 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐶 = 𝐷 ↔ 𝑥 = 𝑦))) |
| Ref | Expression |
|---|---|
| dom2d | ⊢ (𝜑 → (𝐵 ∈ 𝑅 → 𝐴 ≼ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dom2d.1 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)) | |
| 2 | dom2d.2 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐶 = 𝐷 ↔ 𝑥 = 𝑦))) | |
| 3 | 1, 2 | dom2lem 8963 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴–1-1→𝐵) |
| 4 | f1domg 8943 | . 2 ⊢ (𝐵 ∈ 𝑅 → ((𝑥 ∈ 𝐴 ↦ 𝐶):𝐴–1-1→𝐵 → 𝐴 ≼ 𝐵)) | |
| 5 | 3, 4 | syl5com 31 | 1 ⊢ (𝜑 → (𝐵 ∈ 𝑅 → 𝐴 ≼ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 ↦ cmpt 5188 –1-1→wf1 6508 ≼ cdom 8916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-dom 8920 |
| This theorem is referenced by: dom2 8966 fineqvlem 9209 fseqdom 9979 fin1a2lem9 10361 iundom2g 10493 canthwe 10604 prmreclem2 16888 prmreclem3 16889 sylow1lem4 19531 aannenlem1 26236 derangenlem 35158 fphpd 42804 pellexlem3 42819 unxpwdom3 43084 |
| Copyright terms: Public domain | W3C validator |