Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elcarsgss Structured version   Visualization version   GIF version

Theorem elcarsgss 31624
Description: Caratheodory measurable sets are subsets of the universe. (Contributed by Thierry Arnoux, 21-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
difelcarsg.1 (𝜑𝐴 ∈ (toCaraSiga‘𝑀))
Assertion
Ref Expression
elcarsgss (𝜑𝐴𝑂)

Proof of Theorem elcarsgss
StepHypRef Expression
1 carsgval.1 . . . 4 (𝜑𝑂𝑉)
2 carsgval.2 . . . 4 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
31, 2carsgcl 31619 . . 3 (𝜑 → (toCaraSiga‘𝑀) ⊆ 𝒫 𝑂)
4 difelcarsg.1 . . 3 (𝜑𝐴 ∈ (toCaraSiga‘𝑀))
53, 4sseldd 3954 . 2 (𝜑𝐴 ∈ 𝒫 𝑂)
65elpwid 4533 1 (𝜑𝐴𝑂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2115  wss 3919  𝒫 cpw 4522  wf 6339  cfv 6343  (class class class)co 7149  0cc0 10535  +∞cpnf 10670  [,]cicc 12738  toCaraSigaccarsg 31616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-ov 7152  df-carsg 31617
This theorem is referenced by:  unelcarsg  31627  difelcarsg2  31628
  Copyright terms: Public domain W3C validator