![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elcarsgss | Structured version Visualization version GIF version |
Description: Caratheodory measurable sets are subsets of the universe. (Contributed by Thierry Arnoux, 21-May-2020.) |
Ref | Expression |
---|---|
carsgval.1 | ⊢ (𝜑 → 𝑂 ∈ 𝑉) |
carsgval.2 | ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
difelcarsg.1 | ⊢ (𝜑 → 𝐴 ∈ (toCaraSiga‘𝑀)) |
Ref | Expression |
---|---|
elcarsgss | ⊢ (𝜑 → 𝐴 ⊆ 𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | carsgval.1 | . . . 4 ⊢ (𝜑 → 𝑂 ∈ 𝑉) | |
2 | carsgval.2 | . . . 4 ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) | |
3 | 1, 2 | carsgcl 30882 | . . 3 ⊢ (𝜑 → (toCaraSiga‘𝑀) ⊆ 𝒫 𝑂) |
4 | difelcarsg.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (toCaraSiga‘𝑀)) | |
5 | 3, 4 | sseldd 3799 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝑂) |
6 | 5 | elpwid 4361 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝑂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2157 ⊆ wss 3769 𝒫 cpw 4349 ⟶wf 6097 ‘cfv 6101 (class class class)co 6878 0cc0 10224 +∞cpnf 10360 [,]cicc 12427 toCaraSigaccarsg 30879 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-ov 6881 df-carsg 30880 |
This theorem is referenced by: unelcarsg 30890 difelcarsg2 30891 |
Copyright terms: Public domain | W3C validator |