Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elcarsgss Structured version   Visualization version   GIF version

Theorem elcarsgss 33763
Description: Caratheodory measurable sets are subsets of the universe. (Contributed by Thierry Arnoux, 21-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (πœ‘ β†’ 𝑂 ∈ 𝑉)
carsgval.2 (πœ‘ β†’ 𝑀:𝒫 π‘‚βŸΆ(0[,]+∞))
difelcarsg.1 (πœ‘ β†’ 𝐴 ∈ (toCaraSigaβ€˜π‘€))
Assertion
Ref Expression
elcarsgss (πœ‘ β†’ 𝐴 βŠ† 𝑂)

Proof of Theorem elcarsgss
StepHypRef Expression
1 carsgval.1 . . . 4 (πœ‘ β†’ 𝑂 ∈ 𝑉)
2 carsgval.2 . . . 4 (πœ‘ β†’ 𝑀:𝒫 π‘‚βŸΆ(0[,]+∞))
31, 2carsgcl 33758 . . 3 (πœ‘ β†’ (toCaraSigaβ€˜π‘€) βŠ† 𝒫 𝑂)
4 difelcarsg.1 . . 3 (πœ‘ β†’ 𝐴 ∈ (toCaraSigaβ€˜π‘€))
53, 4sseldd 3975 . 2 (πœ‘ β†’ 𝐴 ∈ 𝒫 𝑂)
65elpwid 4603 1 (πœ‘ β†’ 𝐴 βŠ† 𝑂)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∈ wcel 2098   βŠ† wss 3940  π’« cpw 4594  βŸΆwf 6529  β€˜cfv 6533  (class class class)co 7401  0cc0 11105  +∞cpnf 11241  [,]cicc 13323  toCaraSigaccarsg 33755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-ov 7404  df-carsg 33756
This theorem is referenced by:  unelcarsg  33766  difelcarsg2  33767
  Copyright terms: Public domain W3C validator