Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  carsgcl Structured version   Visualization version   GIF version

Theorem carsgcl 34317
Description: Closure of the Caratheodory measurable sets. (Contributed by Thierry Arnoux, 17-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
Assertion
Ref Expression
carsgcl (𝜑 → (toCaraSiga‘𝑀) ⊆ 𝒫 𝑂)

Proof of Theorem carsgcl
Dummy variables 𝑎 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 carsgval.1 . . 3 (𝜑𝑂𝑉)
2 carsgval.2 . . 3 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
31, 2carsgval 34316 . 2 (𝜑 → (toCaraSiga‘𝑀) = {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)})
4 ssrab2 4027 . 2 {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)} ⊆ 𝒫 𝑂
53, 4eqsstrdi 3974 1 (𝜑 → (toCaraSiga‘𝑀) ⊆ 𝒫 𝑂)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wral 3047  {crab 3395  cdif 3894  cin 3896  wss 3897  𝒫 cpw 4547  wf 6477  cfv 6481  (class class class)co 7346  0cc0 11006  +∞cpnf 11143   +𝑒 cxad 13009  [,]cicc 13248  toCaraSigaccarsg 34314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-carsg 34315
This theorem is referenced by:  carsguni  34321  elcarsgss  34322  carsggect  34331  carsgsiga  34335  omsmeas  34336
  Copyright terms: Public domain W3C validator