Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elcntzsn | Structured version Visualization version GIF version |
Description: Value of the centralizer of a singleton. (Contributed by Mario Carneiro, 25-Apr-2016.) |
Ref | Expression |
---|---|
cntzfval.b | ⊢ 𝐵 = (Base‘𝑀) |
cntzfval.p | ⊢ + = (+g‘𝑀) |
cntzfval.z | ⊢ 𝑍 = (Cntz‘𝑀) |
Ref | Expression |
---|---|
elcntzsn | ⊢ (𝑌 ∈ 𝐵 → (𝑋 ∈ (𝑍‘{𝑌}) ↔ (𝑋 ∈ 𝐵 ∧ (𝑋 + 𝑌) = (𝑌 + 𝑋)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cntzfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
2 | cntzfval.p | . . . 4 ⊢ + = (+g‘𝑀) | |
3 | cntzfval.z | . . . 4 ⊢ 𝑍 = (Cntz‘𝑀) | |
4 | 1, 2, 3 | cntzsnval 18845 | . . 3 ⊢ (𝑌 ∈ 𝐵 → (𝑍‘{𝑌}) = {𝑥 ∈ 𝐵 ∣ (𝑥 + 𝑌) = (𝑌 + 𝑥)}) |
5 | 4 | eleq2d 2824 | . 2 ⊢ (𝑌 ∈ 𝐵 → (𝑋 ∈ (𝑍‘{𝑌}) ↔ 𝑋 ∈ {𝑥 ∈ 𝐵 ∣ (𝑥 + 𝑌) = (𝑌 + 𝑥)})) |
6 | oveq1 7262 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 + 𝑌) = (𝑋 + 𝑌)) | |
7 | oveq2 7263 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑌 + 𝑥) = (𝑌 + 𝑋)) | |
8 | 6, 7 | eqeq12d 2754 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑥 + 𝑌) = (𝑌 + 𝑥) ↔ (𝑋 + 𝑌) = (𝑌 + 𝑋))) |
9 | 8 | elrab 3617 | . 2 ⊢ (𝑋 ∈ {𝑥 ∈ 𝐵 ∣ (𝑥 + 𝑌) = (𝑌 + 𝑥)} ↔ (𝑋 ∈ 𝐵 ∧ (𝑋 + 𝑌) = (𝑌 + 𝑋))) |
10 | 5, 9 | bitrdi 286 | 1 ⊢ (𝑌 ∈ 𝐵 → (𝑋 ∈ (𝑍‘{𝑌}) ↔ (𝑋 ∈ 𝐵 ∧ (𝑋 + 𝑌) = (𝑌 + 𝑋)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {crab 3067 {csn 4558 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 Cntzccntz 18836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-cntz 18838 |
This theorem is referenced by: gsumconst 19450 gsumpt 19478 cntzsnid 31223 |
Copyright terms: Public domain | W3C validator |