![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elcntzsn | Structured version Visualization version GIF version |
Description: Value of the centralizer of a singleton. (Contributed by Mario Carneiro, 25-Apr-2016.) |
Ref | Expression |
---|---|
cntzfval.b | โข ๐ต = (Baseโ๐) |
cntzfval.p | โข + = (+gโ๐) |
cntzfval.z | โข ๐ = (Cntzโ๐) |
Ref | Expression |
---|---|
elcntzsn | โข (๐ โ ๐ต โ (๐ โ (๐โ{๐}) โ (๐ โ ๐ต โง (๐ + ๐) = (๐ + ๐)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cntzfval.b | . . . 4 โข ๐ต = (Baseโ๐) | |
2 | cntzfval.p | . . . 4 โข + = (+gโ๐) | |
3 | cntzfval.z | . . . 4 โข ๐ = (Cntzโ๐) | |
4 | 1, 2, 3 | cntzsnval 19188 | . . 3 โข (๐ โ ๐ต โ (๐โ{๐}) = {๐ฅ โ ๐ต โฃ (๐ฅ + ๐) = (๐ + ๐ฅ)}) |
5 | 4 | eleq2d 2820 | . 2 โข (๐ โ ๐ต โ (๐ โ (๐โ{๐}) โ ๐ โ {๐ฅ โ ๐ต โฃ (๐ฅ + ๐) = (๐ + ๐ฅ)})) |
6 | oveq1 7416 | . . . 4 โข (๐ฅ = ๐ โ (๐ฅ + ๐) = (๐ + ๐)) | |
7 | oveq2 7417 | . . . 4 โข (๐ฅ = ๐ โ (๐ + ๐ฅ) = (๐ + ๐)) | |
8 | 6, 7 | eqeq12d 2749 | . . 3 โข (๐ฅ = ๐ โ ((๐ฅ + ๐) = (๐ + ๐ฅ) โ (๐ + ๐) = (๐ + ๐))) |
9 | 8 | elrab 3684 | . 2 โข (๐ โ {๐ฅ โ ๐ต โฃ (๐ฅ + ๐) = (๐ + ๐ฅ)} โ (๐ โ ๐ต โง (๐ + ๐) = (๐ + ๐))) |
10 | 5, 9 | bitrdi 287 | 1 โข (๐ โ ๐ต โ (๐ โ (๐โ{๐}) โ (๐ โ ๐ต โง (๐ + ๐) = (๐ + ๐)))) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โ wb 205 โง wa 397 = wceq 1542 โ wcel 2107 {crab 3433 {csn 4629 โcfv 6544 (class class class)co 7409 Basecbs 17144 +gcplusg 17197 Cntzccntz 19179 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-cntz 19181 |
This theorem is referenced by: gsumconst 19802 gsumpt 19830 cntzsnid 32213 |
Copyright terms: Public domain | W3C validator |