MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elcntzsn Structured version   Visualization version   GIF version

Theorem elcntzsn 19308
Description: Value of the centralizer of a singleton. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
cntzfval.b 𝐵 = (Base‘𝑀)
cntzfval.p + = (+g𝑀)
cntzfval.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
elcntzsn (𝑌𝐵 → (𝑋 ∈ (𝑍‘{𝑌}) ↔ (𝑋𝐵 ∧ (𝑋 + 𝑌) = (𝑌 + 𝑋))))

Proof of Theorem elcntzsn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cntzfval.b . . . 4 𝐵 = (Base‘𝑀)
2 cntzfval.p . . . 4 + = (+g𝑀)
3 cntzfval.z . . . 4 𝑍 = (Cntz‘𝑀)
41, 2, 3cntzsnval 19307 . . 3 (𝑌𝐵 → (𝑍‘{𝑌}) = {𝑥𝐵 ∣ (𝑥 + 𝑌) = (𝑌 + 𝑥)})
54eleq2d 2820 . 2 (𝑌𝐵 → (𝑋 ∈ (𝑍‘{𝑌}) ↔ 𝑋 ∈ {𝑥𝐵 ∣ (𝑥 + 𝑌) = (𝑌 + 𝑥)}))
6 oveq1 7412 . . . 4 (𝑥 = 𝑋 → (𝑥 + 𝑌) = (𝑋 + 𝑌))
7 oveq2 7413 . . . 4 (𝑥 = 𝑋 → (𝑌 + 𝑥) = (𝑌 + 𝑋))
86, 7eqeq12d 2751 . . 3 (𝑥 = 𝑋 → ((𝑥 + 𝑌) = (𝑌 + 𝑥) ↔ (𝑋 + 𝑌) = (𝑌 + 𝑋)))
98elrab 3671 . 2 (𝑋 ∈ {𝑥𝐵 ∣ (𝑥 + 𝑌) = (𝑌 + 𝑥)} ↔ (𝑋𝐵 ∧ (𝑋 + 𝑌) = (𝑌 + 𝑋)))
105, 9bitrdi 287 1 (𝑌𝐵 → (𝑋 ∈ (𝑍‘{𝑌}) ↔ (𝑋𝐵 ∧ (𝑋 + 𝑌) = (𝑌 + 𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  {crab 3415  {csn 4601  cfv 6531  (class class class)co 7405  Basecbs 17228  +gcplusg 17271  Cntzccntz 19298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-cntz 19300
This theorem is referenced by:  gsumconst  19915  gsumpt  19943  cntzsnid  33063
  Copyright terms: Public domain W3C validator