| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cntzsnval | Structured version Visualization version GIF version | ||
| Description: Special substitution for the centralizer of a singleton. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| Ref | Expression |
|---|---|
| cntzfval.b | ⊢ 𝐵 = (Base‘𝑀) |
| cntzfval.p | ⊢ + = (+g‘𝑀) |
| cntzfval.z | ⊢ 𝑍 = (Cntz‘𝑀) |
| Ref | Expression |
|---|---|
| cntzsnval | ⊢ (𝑌 ∈ 𝐵 → (𝑍‘{𝑌}) = {𝑥 ∈ 𝐵 ∣ (𝑥 + 𝑌) = (𝑌 + 𝑥)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi 4775 | . . 3 ⊢ (𝑌 ∈ 𝐵 → {𝑌} ⊆ 𝐵) | |
| 2 | cntzfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
| 3 | cntzfval.p | . . . 4 ⊢ + = (+g‘𝑀) | |
| 4 | cntzfval.z | . . . 4 ⊢ 𝑍 = (Cntz‘𝑀) | |
| 5 | 2, 3, 4 | cntzval 19260 | . . 3 ⊢ ({𝑌} ⊆ 𝐵 → (𝑍‘{𝑌}) = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ {𝑌} (𝑥 + 𝑦) = (𝑦 + 𝑥)}) |
| 6 | 1, 5 | syl 17 | . 2 ⊢ (𝑌 ∈ 𝐵 → (𝑍‘{𝑌}) = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ {𝑌} (𝑥 + 𝑦) = (𝑦 + 𝑥)}) |
| 7 | oveq2 7398 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝑥 + 𝑦) = (𝑥 + 𝑌)) | |
| 8 | oveq1 7397 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝑦 + 𝑥) = (𝑌 + 𝑥)) | |
| 9 | 7, 8 | eqeq12d 2746 | . . . 4 ⊢ (𝑦 = 𝑌 → ((𝑥 + 𝑦) = (𝑦 + 𝑥) ↔ (𝑥 + 𝑌) = (𝑌 + 𝑥))) |
| 10 | 9 | ralsng 4642 | . . 3 ⊢ (𝑌 ∈ 𝐵 → (∀𝑦 ∈ {𝑌} (𝑥 + 𝑦) = (𝑦 + 𝑥) ↔ (𝑥 + 𝑌) = (𝑌 + 𝑥))) |
| 11 | 10 | rabbidv 3416 | . 2 ⊢ (𝑌 ∈ 𝐵 → {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ {𝑌} (𝑥 + 𝑦) = (𝑦 + 𝑥)} = {𝑥 ∈ 𝐵 ∣ (𝑥 + 𝑌) = (𝑌 + 𝑥)}) |
| 12 | 6, 11 | eqtrd 2765 | 1 ⊢ (𝑌 ∈ 𝐵 → (𝑍‘{𝑌}) = {𝑥 ∈ 𝐵 ∣ (𝑥 + 𝑌) = (𝑌 + 𝑥)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3045 {crab 3408 ⊆ wss 3917 {csn 4592 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 Cntzccntz 19254 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-cntz 19256 |
| This theorem is referenced by: elcntzsn 19264 cntziinsn 19276 |
| Copyright terms: Public domain | W3C validator |