MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzsnval Structured version   Visualization version   GIF version

Theorem cntzsnval 19355
Description: Special substitution for the centralizer of a singleton. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
cntzfval.b 𝐵 = (Base‘𝑀)
cntzfval.p + = (+g𝑀)
cntzfval.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
cntzsnval (𝑌𝐵 → (𝑍‘{𝑌}) = {𝑥𝐵 ∣ (𝑥 + 𝑌) = (𝑌 + 𝑥)})
Distinct variable groups:   𝑥, +   𝑥,𝐵   𝑥,𝑀   𝑥,𝑌
Allowed substitution hint:   𝑍(𝑥)

Proof of Theorem cntzsnval
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 snssi 4813 . . 3 (𝑌𝐵 → {𝑌} ⊆ 𝐵)
2 cntzfval.b . . . 4 𝐵 = (Base‘𝑀)
3 cntzfval.p . . . 4 + = (+g𝑀)
4 cntzfval.z . . . 4 𝑍 = (Cntz‘𝑀)
52, 3, 4cntzval 19352 . . 3 ({𝑌} ⊆ 𝐵 → (𝑍‘{𝑌}) = {𝑥𝐵 ∣ ∀𝑦 ∈ {𝑌} (𝑥 + 𝑦) = (𝑦 + 𝑥)})
61, 5syl 17 . 2 (𝑌𝐵 → (𝑍‘{𝑌}) = {𝑥𝐵 ∣ ∀𝑦 ∈ {𝑌} (𝑥 + 𝑦) = (𝑦 + 𝑥)})
7 oveq2 7439 . . . . 5 (𝑦 = 𝑌 → (𝑥 + 𝑦) = (𝑥 + 𝑌))
8 oveq1 7438 . . . . 5 (𝑦 = 𝑌 → (𝑦 + 𝑥) = (𝑌 + 𝑥))
97, 8eqeq12d 2751 . . . 4 (𝑦 = 𝑌 → ((𝑥 + 𝑦) = (𝑦 + 𝑥) ↔ (𝑥 + 𝑌) = (𝑌 + 𝑥)))
109ralsng 4680 . . 3 (𝑌𝐵 → (∀𝑦 ∈ {𝑌} (𝑥 + 𝑦) = (𝑦 + 𝑥) ↔ (𝑥 + 𝑌) = (𝑌 + 𝑥)))
1110rabbidv 3441 . 2 (𝑌𝐵 → {𝑥𝐵 ∣ ∀𝑦 ∈ {𝑌} (𝑥 + 𝑦) = (𝑦 + 𝑥)} = {𝑥𝐵 ∣ (𝑥 + 𝑌) = (𝑌 + 𝑥)})
126, 11eqtrd 2775 1 (𝑌𝐵 → (𝑍‘{𝑌}) = {𝑥𝐵 ∣ (𝑥 + 𝑌) = (𝑌 + 𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  wral 3059  {crab 3433  wss 3963  {csn 4631  cfv 6563  (class class class)co 7431  Basecbs 17245  +gcplusg 17298  Cntzccntz 19346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-cntz 19348
This theorem is referenced by:  elcntzsn  19356  cntziinsn  19368
  Copyright terms: Public domain W3C validator