![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cntzsnval | Structured version Visualization version GIF version |
Description: Special substitution for the centralizer of a singleton. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
cntzfval.b | โข ๐ต = (Baseโ๐) |
cntzfval.p | โข + = (+gโ๐) |
cntzfval.z | โข ๐ = (Cntzโ๐) |
Ref | Expression |
---|---|
cntzsnval | โข (๐ โ ๐ต โ (๐โ{๐}) = {๐ฅ โ ๐ต โฃ (๐ฅ + ๐) = (๐ + ๐ฅ)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssi 4807 | . . 3 โข (๐ โ ๐ต โ {๐} โ ๐ต) | |
2 | cntzfval.b | . . . 4 โข ๐ต = (Baseโ๐) | |
3 | cntzfval.p | . . . 4 โข + = (+gโ๐) | |
4 | cntzfval.z | . . . 4 โข ๐ = (Cntzโ๐) | |
5 | 2, 3, 4 | cntzval 19276 | . . 3 โข ({๐} โ ๐ต โ (๐โ{๐}) = {๐ฅ โ ๐ต โฃ โ๐ฆ โ {๐} (๐ฅ + ๐ฆ) = (๐ฆ + ๐ฅ)}) |
6 | 1, 5 | syl 17 | . 2 โข (๐ โ ๐ต โ (๐โ{๐}) = {๐ฅ โ ๐ต โฃ โ๐ฆ โ {๐} (๐ฅ + ๐ฆ) = (๐ฆ + ๐ฅ)}) |
7 | oveq2 7424 | . . . . 5 โข (๐ฆ = ๐ โ (๐ฅ + ๐ฆ) = (๐ฅ + ๐)) | |
8 | oveq1 7423 | . . . . 5 โข (๐ฆ = ๐ โ (๐ฆ + ๐ฅ) = (๐ + ๐ฅ)) | |
9 | 7, 8 | eqeq12d 2741 | . . . 4 โข (๐ฆ = ๐ โ ((๐ฅ + ๐ฆ) = (๐ฆ + ๐ฅ) โ (๐ฅ + ๐) = (๐ + ๐ฅ))) |
10 | 9 | ralsng 4673 | . . 3 โข (๐ โ ๐ต โ (โ๐ฆ โ {๐} (๐ฅ + ๐ฆ) = (๐ฆ + ๐ฅ) โ (๐ฅ + ๐) = (๐ + ๐ฅ))) |
11 | 10 | rabbidv 3427 | . 2 โข (๐ โ ๐ต โ {๐ฅ โ ๐ต โฃ โ๐ฆ โ {๐} (๐ฅ + ๐ฆ) = (๐ฆ + ๐ฅ)} = {๐ฅ โ ๐ต โฃ (๐ฅ + ๐) = (๐ + ๐ฅ)}) |
12 | 6, 11 | eqtrd 2765 | 1 โข (๐ โ ๐ต โ (๐โ{๐}) = {๐ฅ โ ๐ต โฃ (๐ฅ + ๐) = (๐ + ๐ฅ)}) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 = wceq 1533 โ wcel 2098 โwral 3051 {crab 3419 โ wss 3939 {csn 4624 โcfv 6543 (class class class)co 7416 Basecbs 17179 +gcplusg 17232 Cntzccntz 19270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7419 df-cntz 19272 |
This theorem is referenced by: elcntzsn 19280 cntziinsn 19292 |
Copyright terms: Public domain | W3C validator |