![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cntzsnval | Structured version Visualization version GIF version |
Description: Special substitution for the centralizer of a singleton. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
cntzfval.b | ⊢ 𝐵 = (Base‘𝑀) |
cntzfval.p | ⊢ + = (+g‘𝑀) |
cntzfval.z | ⊢ 𝑍 = (Cntz‘𝑀) |
Ref | Expression |
---|---|
cntzsnval | ⊢ (𝑌 ∈ 𝐵 → (𝑍‘{𝑌}) = {𝑥 ∈ 𝐵 ∣ (𝑥 + 𝑌) = (𝑌 + 𝑥)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssi 4833 | . . 3 ⊢ (𝑌 ∈ 𝐵 → {𝑌} ⊆ 𝐵) | |
2 | cntzfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
3 | cntzfval.p | . . . 4 ⊢ + = (+g‘𝑀) | |
4 | cntzfval.z | . . . 4 ⊢ 𝑍 = (Cntz‘𝑀) | |
5 | 2, 3, 4 | cntzval 19361 | . . 3 ⊢ ({𝑌} ⊆ 𝐵 → (𝑍‘{𝑌}) = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ {𝑌} (𝑥 + 𝑦) = (𝑦 + 𝑥)}) |
6 | 1, 5 | syl 17 | . 2 ⊢ (𝑌 ∈ 𝐵 → (𝑍‘{𝑌}) = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ {𝑌} (𝑥 + 𝑦) = (𝑦 + 𝑥)}) |
7 | oveq2 7456 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝑥 + 𝑦) = (𝑥 + 𝑌)) | |
8 | oveq1 7455 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝑦 + 𝑥) = (𝑌 + 𝑥)) | |
9 | 7, 8 | eqeq12d 2756 | . . . 4 ⊢ (𝑦 = 𝑌 → ((𝑥 + 𝑦) = (𝑦 + 𝑥) ↔ (𝑥 + 𝑌) = (𝑌 + 𝑥))) |
10 | 9 | ralsng 4697 | . . 3 ⊢ (𝑌 ∈ 𝐵 → (∀𝑦 ∈ {𝑌} (𝑥 + 𝑦) = (𝑦 + 𝑥) ↔ (𝑥 + 𝑌) = (𝑌 + 𝑥))) |
11 | 10 | rabbidv 3451 | . 2 ⊢ (𝑌 ∈ 𝐵 → {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ {𝑌} (𝑥 + 𝑦) = (𝑦 + 𝑥)} = {𝑥 ∈ 𝐵 ∣ (𝑥 + 𝑌) = (𝑌 + 𝑥)}) |
12 | 6, 11 | eqtrd 2780 | 1 ⊢ (𝑌 ∈ 𝐵 → (𝑍‘{𝑌}) = {𝑥 ∈ 𝐵 ∣ (𝑥 + 𝑌) = (𝑌 + 𝑥)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∀wral 3067 {crab 3443 ⊆ wss 3976 {csn 4648 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 Cntzccntz 19355 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-cntz 19357 |
This theorem is referenced by: elcntzsn 19365 cntziinsn 19377 |
Copyright terms: Public domain | W3C validator |