MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzsnval Structured version   Visualization version   GIF version

Theorem cntzsnval 19026
Description: Special substitution for the centralizer of a singleton. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
cntzfval.b 𝐵 = (Base‘𝑀)
cntzfval.p + = (+g𝑀)
cntzfval.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
cntzsnval (𝑌𝐵 → (𝑍‘{𝑌}) = {𝑥𝐵 ∣ (𝑥 + 𝑌) = (𝑌 + 𝑥)})
Distinct variable groups:   𝑥, +   𝑥,𝐵   𝑥,𝑀   𝑥,𝑌
Allowed substitution hint:   𝑍(𝑥)

Proof of Theorem cntzsnval
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 snssi 4759 . . 3 (𝑌𝐵 → {𝑌} ⊆ 𝐵)
2 cntzfval.b . . . 4 𝐵 = (Base‘𝑀)
3 cntzfval.p . . . 4 + = (+g𝑀)
4 cntzfval.z . . . 4 𝑍 = (Cntz‘𝑀)
52, 3, 4cntzval 19023 . . 3 ({𝑌} ⊆ 𝐵 → (𝑍‘{𝑌}) = {𝑥𝐵 ∣ ∀𝑦 ∈ {𝑌} (𝑥 + 𝑦) = (𝑦 + 𝑥)})
61, 5syl 17 . 2 (𝑌𝐵 → (𝑍‘{𝑌}) = {𝑥𝐵 ∣ ∀𝑦 ∈ {𝑌} (𝑥 + 𝑦) = (𝑦 + 𝑥)})
7 oveq2 7349 . . . . 5 (𝑦 = 𝑌 → (𝑥 + 𝑦) = (𝑥 + 𝑌))
8 oveq1 7348 . . . . 5 (𝑦 = 𝑌 → (𝑦 + 𝑥) = (𝑌 + 𝑥))
97, 8eqeq12d 2753 . . . 4 (𝑦 = 𝑌 → ((𝑥 + 𝑦) = (𝑦 + 𝑥) ↔ (𝑥 + 𝑌) = (𝑌 + 𝑥)))
109ralsng 4625 . . 3 (𝑌𝐵 → (∀𝑦 ∈ {𝑌} (𝑥 + 𝑦) = (𝑦 + 𝑥) ↔ (𝑥 + 𝑌) = (𝑌 + 𝑥)))
1110rabbidv 3412 . 2 (𝑌𝐵 → {𝑥𝐵 ∣ ∀𝑦 ∈ {𝑌} (𝑥 + 𝑦) = (𝑦 + 𝑥)} = {𝑥𝐵 ∣ (𝑥 + 𝑌) = (𝑌 + 𝑥)})
126, 11eqtrd 2777 1 (𝑌𝐵 → (𝑍‘{𝑌}) = {𝑥𝐵 ∣ (𝑥 + 𝑌) = (𝑌 + 𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  wral 3062  {crab 3404  wss 3901  {csn 4577  cfv 6483  (class class class)co 7341  Basecbs 17009  +gcplusg 17059  Cntzccntz 19017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5233  ax-sep 5247  ax-nul 5254  ax-pow 5312  ax-pr 5376
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3731  df-csb 3847  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-nul 4274  df-if 4478  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4857  df-iun 4947  df-br 5097  df-opab 5159  df-mpt 5180  df-id 5522  df-xp 5630  df-rel 5631  df-cnv 5632  df-co 5633  df-dm 5634  df-rn 5635  df-res 5636  df-ima 5637  df-iota 6435  df-fun 6485  df-fn 6486  df-f 6487  df-f1 6488  df-fo 6489  df-f1o 6490  df-fv 6491  df-ov 7344  df-cntz 19019
This theorem is referenced by:  elcntzsn  19027  cntziinsn  19037
  Copyright terms: Public domain W3C validator