![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cntzsnval | Structured version Visualization version GIF version |
Description: Special substitution for the centralizer of a singleton. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
cntzfval.b | โข ๐ต = (Baseโ๐) |
cntzfval.p | โข + = (+gโ๐) |
cntzfval.z | โข ๐ = (Cntzโ๐) |
Ref | Expression |
---|---|
cntzsnval | โข (๐ โ ๐ต โ (๐โ{๐}) = {๐ฅ โ ๐ต โฃ (๐ฅ + ๐) = (๐ + ๐ฅ)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssi 4810 | . . 3 โข (๐ โ ๐ต โ {๐} โ ๐ต) | |
2 | cntzfval.b | . . . 4 โข ๐ต = (Baseโ๐) | |
3 | cntzfval.p | . . . 4 โข + = (+gโ๐) | |
4 | cntzfval.z | . . . 4 โข ๐ = (Cntzโ๐) | |
5 | 2, 3, 4 | cntzval 19179 | . . 3 โข ({๐} โ ๐ต โ (๐โ{๐}) = {๐ฅ โ ๐ต โฃ โ๐ฆ โ {๐} (๐ฅ + ๐ฆ) = (๐ฆ + ๐ฅ)}) |
6 | 1, 5 | syl 17 | . 2 โข (๐ โ ๐ต โ (๐โ{๐}) = {๐ฅ โ ๐ต โฃ โ๐ฆ โ {๐} (๐ฅ + ๐ฆ) = (๐ฆ + ๐ฅ)}) |
7 | oveq2 7413 | . . . . 5 โข (๐ฆ = ๐ โ (๐ฅ + ๐ฆ) = (๐ฅ + ๐)) | |
8 | oveq1 7412 | . . . . 5 โข (๐ฆ = ๐ โ (๐ฆ + ๐ฅ) = (๐ + ๐ฅ)) | |
9 | 7, 8 | eqeq12d 2748 | . . . 4 โข (๐ฆ = ๐ โ ((๐ฅ + ๐ฆ) = (๐ฆ + ๐ฅ) โ (๐ฅ + ๐) = (๐ + ๐ฅ))) |
10 | 9 | ralsng 4676 | . . 3 โข (๐ โ ๐ต โ (โ๐ฆ โ {๐} (๐ฅ + ๐ฆ) = (๐ฆ + ๐ฅ) โ (๐ฅ + ๐) = (๐ + ๐ฅ))) |
11 | 10 | rabbidv 3440 | . 2 โข (๐ โ ๐ต โ {๐ฅ โ ๐ต โฃ โ๐ฆ โ {๐} (๐ฅ + ๐ฆ) = (๐ฆ + ๐ฅ)} = {๐ฅ โ ๐ต โฃ (๐ฅ + ๐) = (๐ + ๐ฅ)}) |
12 | 6, 11 | eqtrd 2772 | 1 โข (๐ โ ๐ต โ (๐โ{๐}) = {๐ฅ โ ๐ต โฃ (๐ฅ + ๐) = (๐ + ๐ฅ)}) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 = wceq 1541 โ wcel 2106 โwral 3061 {crab 3432 โ wss 3947 {csn 4627 โcfv 6540 (class class class)co 7405 Basecbs 17140 +gcplusg 17193 Cntzccntz 19173 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-cntz 19175 |
This theorem is referenced by: elcntzsn 19183 cntziinsn 19195 |
Copyright terms: Public domain | W3C validator |