MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumconst Structured version   Visualization version   GIF version

Theorem gsumconst 19864
Description: Sum of a constant series. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
gsumconst.b 𝐵 = (Base‘𝐺)
gsumconst.m · = (.g𝐺)
Assertion
Ref Expression
gsumconst ((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) → (𝐺 Σg (𝑘𝐴𝑋)) = ((♯‘𝐴) · 𝑋))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐺   𝑘,𝑋
Allowed substitution hint:   · (𝑘)

Proof of Theorem gsumconst
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl3 1194 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ 𝐴 = ∅) → 𝑋𝐵)
2 gsumconst.b . . . . . 6 𝐵 = (Base‘𝐺)
3 eqid 2729 . . . . . 6 (0g𝐺) = (0g𝐺)
4 gsumconst.m . . . . . 6 · = (.g𝐺)
52, 3, 4mulg0 19006 . . . . 5 (𝑋𝐵 → (0 · 𝑋) = (0g𝐺))
61, 5syl 17 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ 𝐴 = ∅) → (0 · 𝑋) = (0g𝐺))
7 fveq2 6858 . . . . . . 7 (𝐴 = ∅ → (♯‘𝐴) = (♯‘∅))
87adantl 481 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ 𝐴 = ∅) → (♯‘𝐴) = (♯‘∅))
9 hash0 14332 . . . . . 6 (♯‘∅) = 0
108, 9eqtrdi 2780 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ 𝐴 = ∅) → (♯‘𝐴) = 0)
1110oveq1d 7402 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ 𝐴 = ∅) → ((♯‘𝐴) · 𝑋) = (0 · 𝑋))
12 mpteq1 5196 . . . . . . . 8 (𝐴 = ∅ → (𝑘𝐴𝑋) = (𝑘 ∈ ∅ ↦ 𝑋))
1312adantl 481 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ 𝐴 = ∅) → (𝑘𝐴𝑋) = (𝑘 ∈ ∅ ↦ 𝑋))
14 mpt0 6660 . . . . . . 7 (𝑘 ∈ ∅ ↦ 𝑋) = ∅
1513, 14eqtrdi 2780 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ 𝐴 = ∅) → (𝑘𝐴𝑋) = ∅)
1615oveq2d 7403 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ 𝐴 = ∅) → (𝐺 Σg (𝑘𝐴𝑋)) = (𝐺 Σg ∅))
173gsum0 18611 . . . . 5 (𝐺 Σg ∅) = (0g𝐺)
1816, 17eqtrdi 2780 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ 𝐴 = ∅) → (𝐺 Σg (𝑘𝐴𝑋)) = (0g𝐺))
196, 11, 183eqtr4rd 2775 . . 3 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ 𝐴 = ∅) → (𝐺 Σg (𝑘𝐴𝑋)) = ((♯‘𝐴) · 𝑋))
2019ex 412 . 2 ((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) → (𝐴 = ∅ → (𝐺 Σg (𝑘𝐴𝑋)) = ((♯‘𝐴) · 𝑋)))
21 simprl 770 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ ℕ)
22 nnuz 12836 . . . . . . . 8 ℕ = (ℤ‘1)
2321, 22eleqtrdi 2838 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ (ℤ‘1))
24 simpr 484 . . . . . . . . 9 ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → 𝑥 ∈ (1...(♯‘𝐴)))
25 simpl3 1194 . . . . . . . . . 10 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑋𝐵)
2625adantr 480 . . . . . . . . 9 ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → 𝑋𝐵)
27 eqid 2729 . . . . . . . . . 10 (𝑥 ∈ (1...(♯‘𝐴)) ↦ 𝑋) = (𝑥 ∈ (1...(♯‘𝐴)) ↦ 𝑋)
2827fvmpt2 6979 . . . . . . . . 9 ((𝑥 ∈ (1...(♯‘𝐴)) ∧ 𝑋𝐵) → ((𝑥 ∈ (1...(♯‘𝐴)) ↦ 𝑋)‘𝑥) = 𝑋)
2924, 26, 28syl2anc 584 . . . . . . . 8 ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → ((𝑥 ∈ (1...(♯‘𝐴)) ↦ 𝑋)‘𝑥) = 𝑋)
30 f1of 6800 . . . . . . . . . . . . 13 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑓:(1...(♯‘𝐴))⟶𝐴)
3130ad2antll 729 . . . . . . . . . . . 12 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))⟶𝐴)
3231ffvelcdmda 7056 . . . . . . . . . . 11 ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (𝑓𝑥) ∈ 𝐴)
3331feqmptd 6929 . . . . . . . . . . 11 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓 = (𝑥 ∈ (1...(♯‘𝐴)) ↦ (𝑓𝑥)))
34 eqidd 2730 . . . . . . . . . . 11 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴𝑋) = (𝑘𝐴𝑋))
35 eqidd 2730 . . . . . . . . . . 11 (𝑘 = (𝑓𝑥) → 𝑋 = 𝑋)
3632, 33, 34, 35fmptco 7101 . . . . . . . . . 10 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ((𝑘𝐴𝑋) ∘ 𝑓) = (𝑥 ∈ (1...(♯‘𝐴)) ↦ 𝑋))
3736fveq1d 6860 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (((𝑘𝐴𝑋) ∘ 𝑓)‘𝑥) = ((𝑥 ∈ (1...(♯‘𝐴)) ↦ 𝑋)‘𝑥))
3837adantr 480 . . . . . . . 8 ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝑋) ∘ 𝑓)‘𝑥) = ((𝑥 ∈ (1...(♯‘𝐴)) ↦ 𝑋)‘𝑥))
39 elfznn 13514 . . . . . . . . 9 (𝑥 ∈ (1...(♯‘𝐴)) → 𝑥 ∈ ℕ)
40 fvconst2g 7176 . . . . . . . . 9 ((𝑋𝐵𝑥 ∈ ℕ) → ((ℕ × {𝑋})‘𝑥) = 𝑋)
4125, 39, 40syl2an 596 . . . . . . . 8 ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → ((ℕ × {𝑋})‘𝑥) = 𝑋)
4229, 38, 413eqtr4d 2774 . . . . . . 7 ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝑋) ∘ 𝑓)‘𝑥) = ((ℕ × {𝑋})‘𝑥))
4323, 42seqfveq 13991 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (seq1((+g𝐺), ((𝑘𝐴𝑋) ∘ 𝑓))‘(♯‘𝐴)) = (seq1((+g𝐺), (ℕ × {𝑋}))‘(♯‘𝐴)))
44 eqid 2729 . . . . . . 7 (+g𝐺) = (+g𝐺)
45 eqid 2729 . . . . . . 7 (Cntz‘𝐺) = (Cntz‘𝐺)
46 simpl1 1192 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝐺 ∈ Mnd)
47 simpl2 1193 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝐴 ∈ Fin)
4825adantr 480 . . . . . . . 8 ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑘𝐴) → 𝑋𝐵)
4948fmpttd 7087 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴𝑋):𝐴𝐵)
50 eqidd 2730 . . . . . . . . . 10 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑋(+g𝐺)𝑋) = (𝑋(+g𝐺)𝑋))
512, 44, 45elcntzsn 19257 . . . . . . . . . . 11 (𝑋𝐵 → (𝑋 ∈ ((Cntz‘𝐺)‘{𝑋}) ↔ (𝑋𝐵 ∧ (𝑋(+g𝐺)𝑋) = (𝑋(+g𝐺)𝑋))))
5225, 51syl 17 . . . . . . . . . 10 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑋 ∈ ((Cntz‘𝐺)‘{𝑋}) ↔ (𝑋𝐵 ∧ (𝑋(+g𝐺)𝑋) = (𝑋(+g𝐺)𝑋))))
5325, 50, 52mpbir2and 713 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑋 ∈ ((Cntz‘𝐺)‘{𝑋}))
5453snssd 4773 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → {𝑋} ⊆ ((Cntz‘𝐺)‘{𝑋}))
55 snidg 4624 . . . . . . . . . . . 12 (𝑋𝐵𝑋 ∈ {𝑋})
5625, 55syl 17 . . . . . . . . . . 11 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑋 ∈ {𝑋})
5756adantr 480 . . . . . . . . . 10 ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑘𝐴) → 𝑋 ∈ {𝑋})
5857fmpttd 7087 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴𝑋):𝐴⟶{𝑋})
5958frnd 6696 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ran (𝑘𝐴𝑋) ⊆ {𝑋})
6045cntzidss 19272 . . . . . . . 8 (({𝑋} ⊆ ((Cntz‘𝐺)‘{𝑋}) ∧ ran (𝑘𝐴𝑋) ⊆ {𝑋}) → ran (𝑘𝐴𝑋) ⊆ ((Cntz‘𝐺)‘ran (𝑘𝐴𝑋)))
6154, 59, 60syl2anc 584 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ran (𝑘𝐴𝑋) ⊆ ((Cntz‘𝐺)‘ran (𝑘𝐴𝑋)))
62 f1of1 6799 . . . . . . . 8 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑓:(1...(♯‘𝐴))–1-1𝐴)
6362ad2antll 729 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))–1-1𝐴)
64 suppssdm 8156 . . . . . . . . 9 ((𝑘𝐴𝑋) supp (0g𝐺)) ⊆ dom (𝑘𝐴𝑋)
65 eqid 2729 . . . . . . . . . . 11 (𝑘𝐴𝑋) = (𝑘𝐴𝑋)
6665dmmptss 6214 . . . . . . . . . 10 dom (𝑘𝐴𝑋) ⊆ 𝐴
6766a1i 11 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → dom (𝑘𝐴𝑋) ⊆ 𝐴)
6864, 67sstrid 3958 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ((𝑘𝐴𝑋) supp (0g𝐺)) ⊆ 𝐴)
69 f1ofo 6807 . . . . . . . . . 10 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑓:(1...(♯‘𝐴))–onto𝐴)
70 forn 6775 . . . . . . . . . 10 (𝑓:(1...(♯‘𝐴))–onto𝐴 → ran 𝑓 = 𝐴)
7169, 70syl 17 . . . . . . . . 9 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → ran 𝑓 = 𝐴)
7271ad2antll 729 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ran 𝑓 = 𝐴)
7368, 72sseqtrrd 3984 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ((𝑘𝐴𝑋) supp (0g𝐺)) ⊆ ran 𝑓)
74 eqid 2729 . . . . . . 7 (((𝑘𝐴𝑋) ∘ 𝑓) supp (0g𝐺)) = (((𝑘𝐴𝑋) ∘ 𝑓) supp (0g𝐺))
752, 3, 44, 45, 46, 47, 49, 61, 21, 63, 73, 74gsumval3 19837 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝐺 Σg (𝑘𝐴𝑋)) = (seq1((+g𝐺), ((𝑘𝐴𝑋) ∘ 𝑓))‘(♯‘𝐴)))
76 eqid 2729 . . . . . . . 8 seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐺), (ℕ × {𝑋}))
772, 44, 4, 76mulgnn 19007 . . . . . . 7 (((♯‘𝐴) ∈ ℕ ∧ 𝑋𝐵) → ((♯‘𝐴) · 𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘(♯‘𝐴)))
7821, 25, 77syl2anc 584 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ((♯‘𝐴) · 𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘(♯‘𝐴)))
7943, 75, 783eqtr4d 2774 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝐺 Σg (𝑘𝐴𝑋)) = ((♯‘𝐴) · 𝑋))
8079expr 456 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ (♯‘𝐴) ∈ ℕ) → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → (𝐺 Σg (𝑘𝐴𝑋)) = ((♯‘𝐴) · 𝑋)))
8180exlimdv 1933 . . 3 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ (♯‘𝐴) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → (𝐺 Σg (𝑘𝐴𝑋)) = ((♯‘𝐴) · 𝑋)))
8281expimpd 453 . 2 ((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) → (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (𝐺 Σg (𝑘𝐴𝑋)) = ((♯‘𝐴) · 𝑋)))
83 fz1f1o 15676 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
84833ad2ant2 1134 . 2 ((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
8520, 82, 84mpjaod 860 1 ((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) → (𝐺 Σg (𝑘𝐴𝑋)) = ((♯‘𝐴) · 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wss 3914  c0 4296  {csn 4589  cmpt 5188   × cxp 5636  dom cdm 5638  ran crn 5639  ccom 5642  wf 6507  1-1wf1 6508  ontowfo 6509  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387   supp csupp 8139  Fincfn 8918  0cc0 11068  1c1 11069  cn 12186  cuz 12793  ...cfz 13468  seqcseq 13966  chash 14295  Basecbs 17179  +gcplusg 17220  0gc0g 17402   Σg cgsu 17403  Mndcmnd 18661  .gcmg 18999  Cntzccntz 19247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-0g 17404  df-gsum 17405  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mulg 19000  df-cntz 19249
This theorem is referenced by:  gsumconstf  19865  mdetdiagid  22487  chpscmat  22729  chp0mat  22733  chpidmat  22734  tmdgsum2  23983  amgmlem  26900  lgseisenlem4  27289  gsumhashmul  33001
  Copyright terms: Public domain W3C validator