| Step | Hyp | Ref
| Expression |
| 1 | | simpl3 1194 |
. . . . 5
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ 𝐴 = ∅) → 𝑋 ∈ 𝐵) |
| 2 | | gsumconst.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐺) |
| 3 | | eqid 2737 |
. . . . . 6
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 4 | | gsumconst.m |
. . . . . 6
⊢ · =
(.g‘𝐺) |
| 5 | 2, 3, 4 | mulg0 19092 |
. . . . 5
⊢ (𝑋 ∈ 𝐵 → (0 · 𝑋) = (0g‘𝐺)) |
| 6 | 1, 5 | syl 17 |
. . . 4
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ 𝐴 = ∅) → (0 · 𝑋) = (0g‘𝐺)) |
| 7 | | fveq2 6906 |
. . . . . . 7
⊢ (𝐴 = ∅ →
(♯‘𝐴) =
(♯‘∅)) |
| 8 | 7 | adantl 481 |
. . . . . 6
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ 𝐴 = ∅) → (♯‘𝐴) =
(♯‘∅)) |
| 9 | | hash0 14406 |
. . . . . 6
⊢
(♯‘∅) = 0 |
| 10 | 8, 9 | eqtrdi 2793 |
. . . . 5
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ 𝐴 = ∅) → (♯‘𝐴) = 0) |
| 11 | 10 | oveq1d 7446 |
. . . 4
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ 𝐴 = ∅) → ((♯‘𝐴) · 𝑋) = (0 · 𝑋)) |
| 12 | | mpteq1 5235 |
. . . . . . . 8
⊢ (𝐴 = ∅ → (𝑘 ∈ 𝐴 ↦ 𝑋) = (𝑘 ∈ ∅ ↦ 𝑋)) |
| 13 | 12 | adantl 481 |
. . . . . . 7
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ 𝐴 = ∅) → (𝑘 ∈ 𝐴 ↦ 𝑋) = (𝑘 ∈ ∅ ↦ 𝑋)) |
| 14 | | mpt0 6710 |
. . . . . . 7
⊢ (𝑘 ∈ ∅ ↦ 𝑋) = ∅ |
| 15 | 13, 14 | eqtrdi 2793 |
. . . . . 6
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ 𝐴 = ∅) → (𝑘 ∈ 𝐴 ↦ 𝑋) = ∅) |
| 16 | 15 | oveq2d 7447 |
. . . . 5
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ 𝐴 = ∅) → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = (𝐺 Σg
∅)) |
| 17 | 3 | gsum0 18697 |
. . . . 5
⊢ (𝐺 Σg
∅) = (0g‘𝐺) |
| 18 | 16, 17 | eqtrdi 2793 |
. . . 4
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ 𝐴 = ∅) → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = (0g‘𝐺)) |
| 19 | 6, 11, 18 | 3eqtr4rd 2788 |
. . 3
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ 𝐴 = ∅) → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = ((♯‘𝐴) · 𝑋)) |
| 20 | 19 | ex 412 |
. 2
⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) → (𝐴 = ∅ → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = ((♯‘𝐴) · 𝑋))) |
| 21 | | simprl 771 |
. . . . . . . 8
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (♯‘𝐴) ∈
ℕ) |
| 22 | | nnuz 12921 |
. . . . . . . 8
⊢ ℕ =
(ℤ≥‘1) |
| 23 | 21, 22 | eleqtrdi 2851 |
. . . . . . 7
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (♯‘𝐴) ∈
(ℤ≥‘1)) |
| 24 | | simpr 484 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → 𝑥 ∈ (1...(♯‘𝐴))) |
| 25 | | simpl3 1194 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → 𝑋 ∈ 𝐵) |
| 26 | 25 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → 𝑋 ∈ 𝐵) |
| 27 | | eqid 2737 |
. . . . . . . . . 10
⊢ (𝑥 ∈
(1...(♯‘𝐴))
↦ 𝑋) = (𝑥 ∈
(1...(♯‘𝐴))
↦ 𝑋) |
| 28 | 27 | fvmpt2 7027 |
. . . . . . . . 9
⊢ ((𝑥 ∈
(1...(♯‘𝐴))
∧ 𝑋 ∈ 𝐵) → ((𝑥 ∈ (1...(♯‘𝐴)) ↦ 𝑋)‘𝑥) = 𝑋) |
| 29 | 24, 26, 28 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → ((𝑥 ∈ (1...(♯‘𝐴)) ↦ 𝑋)‘𝑥) = 𝑋) |
| 30 | | f1of 6848 |
. . . . . . . . . . . . 13
⊢ (𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 → 𝑓:(1...(♯‘𝐴))⟶𝐴) |
| 31 | 30 | ad2antll 729 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → 𝑓:(1...(♯‘𝐴))⟶𝐴) |
| 32 | 31 | ffvelcdmda 7104 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (𝑓‘𝑥) ∈ 𝐴) |
| 33 | 31 | feqmptd 6977 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → 𝑓 = (𝑥 ∈ (1...(♯‘𝐴)) ↦ (𝑓‘𝑥))) |
| 34 | | eqidd 2738 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (𝑘 ∈ 𝐴 ↦ 𝑋) = (𝑘 ∈ 𝐴 ↦ 𝑋)) |
| 35 | | eqidd 2738 |
. . . . . . . . . . 11
⊢ (𝑘 = (𝑓‘𝑥) → 𝑋 = 𝑋) |
| 36 | 32, 33, 34, 35 | fmptco 7149 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → ((𝑘 ∈ 𝐴 ↦ 𝑋) ∘ 𝑓) = (𝑥 ∈ (1...(♯‘𝐴)) ↦ 𝑋)) |
| 37 | 36 | fveq1d 6908 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (((𝑘 ∈ 𝐴 ↦ 𝑋) ∘ 𝑓)‘𝑥) = ((𝑥 ∈ (1...(♯‘𝐴)) ↦ 𝑋)‘𝑥)) |
| 38 | 37 | adantr 480 |
. . . . . . . 8
⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝑋) ∘ 𝑓)‘𝑥) = ((𝑥 ∈ (1...(♯‘𝐴)) ↦ 𝑋)‘𝑥)) |
| 39 | | elfznn 13593 |
. . . . . . . . 9
⊢ (𝑥 ∈
(1...(♯‘𝐴))
→ 𝑥 ∈
ℕ) |
| 40 | | fvconst2g 7222 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑥 ∈ ℕ) → ((ℕ ×
{𝑋})‘𝑥) = 𝑋) |
| 41 | 25, 39, 40 | syl2an 596 |
. . . . . . . 8
⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → ((ℕ × {𝑋})‘𝑥) = 𝑋) |
| 42 | 29, 38, 41 | 3eqtr4d 2787 |
. . . . . . 7
⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝑋) ∘ 𝑓)‘𝑥) = ((ℕ × {𝑋})‘𝑥)) |
| 43 | 23, 42 | seqfveq 14067 |
. . . . . 6
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) →
(seq1((+g‘𝐺), ((𝑘 ∈ 𝐴 ↦ 𝑋) ∘ 𝑓))‘(♯‘𝐴)) = (seq1((+g‘𝐺), (ℕ × {𝑋}))‘(♯‘𝐴))) |
| 44 | | eqid 2737 |
. . . . . . 7
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 45 | | eqid 2737 |
. . . . . . 7
⊢
(Cntz‘𝐺) =
(Cntz‘𝐺) |
| 46 | | simpl1 1192 |
. . . . . . 7
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → 𝐺 ∈ Mnd) |
| 47 | | simpl2 1193 |
. . . . . . 7
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → 𝐴 ∈ Fin) |
| 48 | 25 | adantr 480 |
. . . . . . . 8
⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) |
| 49 | 48 | fmpttd 7135 |
. . . . . . 7
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (𝑘 ∈ 𝐴 ↦ 𝑋):𝐴⟶𝐵) |
| 50 | | eqidd 2738 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (𝑋(+g‘𝐺)𝑋) = (𝑋(+g‘𝐺)𝑋)) |
| 51 | 2, 44, 45 | elcntzsn 19343 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ 𝐵 → (𝑋 ∈ ((Cntz‘𝐺)‘{𝑋}) ↔ (𝑋 ∈ 𝐵 ∧ (𝑋(+g‘𝐺)𝑋) = (𝑋(+g‘𝐺)𝑋)))) |
| 52 | 25, 51 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (𝑋 ∈ ((Cntz‘𝐺)‘{𝑋}) ↔ (𝑋 ∈ 𝐵 ∧ (𝑋(+g‘𝐺)𝑋) = (𝑋(+g‘𝐺)𝑋)))) |
| 53 | 25, 50, 52 | mpbir2and 713 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → 𝑋 ∈ ((Cntz‘𝐺)‘{𝑋})) |
| 54 | 53 | snssd 4809 |
. . . . . . . 8
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → {𝑋} ⊆ ((Cntz‘𝐺)‘{𝑋})) |
| 55 | | snidg 4660 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ {𝑋}) |
| 56 | 25, 55 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → 𝑋 ∈ {𝑋}) |
| 57 | 56 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ {𝑋}) |
| 58 | 57 | fmpttd 7135 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (𝑘 ∈ 𝐴 ↦ 𝑋):𝐴⟶{𝑋}) |
| 59 | 58 | frnd 6744 |
. . . . . . . 8
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → ran (𝑘 ∈ 𝐴 ↦ 𝑋) ⊆ {𝑋}) |
| 60 | 45 | cntzidss 19358 |
. . . . . . . 8
⊢ (({𝑋} ⊆ ((Cntz‘𝐺)‘{𝑋}) ∧ ran (𝑘 ∈ 𝐴 ↦ 𝑋) ⊆ {𝑋}) → ran (𝑘 ∈ 𝐴 ↦ 𝑋) ⊆ ((Cntz‘𝐺)‘ran (𝑘 ∈ 𝐴 ↦ 𝑋))) |
| 61 | 54, 59, 60 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → ran (𝑘 ∈ 𝐴 ↦ 𝑋) ⊆ ((Cntz‘𝐺)‘ran (𝑘 ∈ 𝐴 ↦ 𝑋))) |
| 62 | | f1of1 6847 |
. . . . . . . 8
⊢ (𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 → 𝑓:(1...(♯‘𝐴))–1-1→𝐴) |
| 63 | 62 | ad2antll 729 |
. . . . . . 7
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → 𝑓:(1...(♯‘𝐴))–1-1→𝐴) |
| 64 | | suppssdm 8202 |
. . . . . . . . 9
⊢ ((𝑘 ∈ 𝐴 ↦ 𝑋) supp (0g‘𝐺)) ⊆ dom (𝑘 ∈ 𝐴 ↦ 𝑋) |
| 65 | | eqid 2737 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ 𝐴 ↦ 𝑋) = (𝑘 ∈ 𝐴 ↦ 𝑋) |
| 66 | 65 | dmmptss 6261 |
. . . . . . . . . 10
⊢ dom
(𝑘 ∈ 𝐴 ↦ 𝑋) ⊆ 𝐴 |
| 67 | 66 | a1i 11 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → dom (𝑘 ∈ 𝐴 ↦ 𝑋) ⊆ 𝐴) |
| 68 | 64, 67 | sstrid 3995 |
. . . . . . . 8
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → ((𝑘 ∈ 𝐴 ↦ 𝑋) supp (0g‘𝐺)) ⊆ 𝐴) |
| 69 | | f1ofo 6855 |
. . . . . . . . . 10
⊢ (𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 → 𝑓:(1...(♯‘𝐴))–onto→𝐴) |
| 70 | | forn 6823 |
. . . . . . . . . 10
⊢ (𝑓:(1...(♯‘𝐴))–onto→𝐴 → ran 𝑓 = 𝐴) |
| 71 | 69, 70 | syl 17 |
. . . . . . . . 9
⊢ (𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 → ran 𝑓 = 𝐴) |
| 72 | 71 | ad2antll 729 |
. . . . . . . 8
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → ran 𝑓 = 𝐴) |
| 73 | 68, 72 | sseqtrrd 4021 |
. . . . . . 7
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → ((𝑘 ∈ 𝐴 ↦ 𝑋) supp (0g‘𝐺)) ⊆ ran 𝑓) |
| 74 | | eqid 2737 |
. . . . . . 7
⊢ (((𝑘 ∈ 𝐴 ↦ 𝑋) ∘ 𝑓) supp (0g‘𝐺)) = (((𝑘 ∈ 𝐴 ↦ 𝑋) ∘ 𝑓) supp (0g‘𝐺)) |
| 75 | 2, 3, 44, 45, 46, 47, 49, 61, 21, 63, 73, 74 | gsumval3 19925 |
. . . . . 6
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = (seq1((+g‘𝐺), ((𝑘 ∈ 𝐴 ↦ 𝑋) ∘ 𝑓))‘(♯‘𝐴))) |
| 76 | | eqid 2737 |
. . . . . . . 8
⊢
seq1((+g‘𝐺), (ℕ × {𝑋})) = seq1((+g‘𝐺), (ℕ × {𝑋})) |
| 77 | 2, 44, 4, 76 | mulgnn 19093 |
. . . . . . 7
⊢
(((♯‘𝐴)
∈ ℕ ∧ 𝑋
∈ 𝐵) →
((♯‘𝐴) · 𝑋) =
(seq1((+g‘𝐺), (ℕ × {𝑋}))‘(♯‘𝐴))) |
| 78 | 21, 25, 77 | syl2anc 584 |
. . . . . 6
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → ((♯‘𝐴) · 𝑋) = (seq1((+g‘𝐺), (ℕ × {𝑋}))‘(♯‘𝐴))) |
| 79 | 43, 75, 78 | 3eqtr4d 2787 |
. . . . 5
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = ((♯‘𝐴) · 𝑋)) |
| 80 | 79 | expr 456 |
. . . 4
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ (♯‘𝐴) ∈ ℕ) → (𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = ((♯‘𝐴) · 𝑋))) |
| 81 | 80 | exlimdv 1933 |
. . 3
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ (♯‘𝐴) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = ((♯‘𝐴) · 𝑋))) |
| 82 | 81 | expimpd 453 |
. 2
⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) → (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = ((♯‘𝐴) · 𝑋))) |
| 83 | | fz1f1o 15746 |
. . 3
⊢ (𝐴 ∈ Fin → (𝐴 = ∅ ∨
((♯‘𝐴) ∈
ℕ ∧ ∃𝑓
𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴))) |
| 84 | 83 | 3ad2ant2 1135 |
. 2
⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧
∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴))) |
| 85 | 20, 82, 84 | mpjaod 861 |
1
⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = ((♯‘𝐴) · 𝑋)) |