MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumconst Structured version   Visualization version   GIF version

Theorem gsumconst 19166
Description: Sum of a constant series. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
gsumconst.b 𝐵 = (Base‘𝐺)
gsumconst.m · = (.g𝐺)
Assertion
Ref Expression
gsumconst ((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) → (𝐺 Σg (𝑘𝐴𝑋)) = ((♯‘𝐴) · 𝑋))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐺   𝑘,𝑋
Allowed substitution hint:   · (𝑘)

Proof of Theorem gsumconst
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl3 1194 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ 𝐴 = ∅) → 𝑋𝐵)
2 gsumconst.b . . . . . 6 𝐵 = (Base‘𝐺)
3 eqid 2738 . . . . . 6 (0g𝐺) = (0g𝐺)
4 gsumconst.m . . . . . 6 · = (.g𝐺)
52, 3, 4mulg0 18342 . . . . 5 (𝑋𝐵 → (0 · 𝑋) = (0g𝐺))
61, 5syl 17 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ 𝐴 = ∅) → (0 · 𝑋) = (0g𝐺))
7 fveq2 6668 . . . . . . 7 (𝐴 = ∅ → (♯‘𝐴) = (♯‘∅))
87adantl 485 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ 𝐴 = ∅) → (♯‘𝐴) = (♯‘∅))
9 hash0 13813 . . . . . 6 (♯‘∅) = 0
108, 9eqtrdi 2789 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ 𝐴 = ∅) → (♯‘𝐴) = 0)
1110oveq1d 7179 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ 𝐴 = ∅) → ((♯‘𝐴) · 𝑋) = (0 · 𝑋))
12 mpteq1 5115 . . . . . . . 8 (𝐴 = ∅ → (𝑘𝐴𝑋) = (𝑘 ∈ ∅ ↦ 𝑋))
1312adantl 485 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ 𝐴 = ∅) → (𝑘𝐴𝑋) = (𝑘 ∈ ∅ ↦ 𝑋))
14 mpt0 6473 . . . . . . 7 (𝑘 ∈ ∅ ↦ 𝑋) = ∅
1513, 14eqtrdi 2789 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ 𝐴 = ∅) → (𝑘𝐴𝑋) = ∅)
1615oveq2d 7180 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ 𝐴 = ∅) → (𝐺 Σg (𝑘𝐴𝑋)) = (𝐺 Σg ∅))
173gsum0 18003 . . . . 5 (𝐺 Σg ∅) = (0g𝐺)
1816, 17eqtrdi 2789 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ 𝐴 = ∅) → (𝐺 Σg (𝑘𝐴𝑋)) = (0g𝐺))
196, 11, 183eqtr4rd 2784 . . 3 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ 𝐴 = ∅) → (𝐺 Σg (𝑘𝐴𝑋)) = ((♯‘𝐴) · 𝑋))
2019ex 416 . 2 ((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) → (𝐴 = ∅ → (𝐺 Σg (𝑘𝐴𝑋)) = ((♯‘𝐴) · 𝑋)))
21 simprl 771 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ ℕ)
22 nnuz 12356 . . . . . . . 8 ℕ = (ℤ‘1)
2321, 22eleqtrdi 2843 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ (ℤ‘1))
24 simpr 488 . . . . . . . . 9 ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → 𝑥 ∈ (1...(♯‘𝐴)))
25 simpl3 1194 . . . . . . . . . 10 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑋𝐵)
2625adantr 484 . . . . . . . . 9 ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → 𝑋𝐵)
27 eqid 2738 . . . . . . . . . 10 (𝑥 ∈ (1...(♯‘𝐴)) ↦ 𝑋) = (𝑥 ∈ (1...(♯‘𝐴)) ↦ 𝑋)
2827fvmpt2 6780 . . . . . . . . 9 ((𝑥 ∈ (1...(♯‘𝐴)) ∧ 𝑋𝐵) → ((𝑥 ∈ (1...(♯‘𝐴)) ↦ 𝑋)‘𝑥) = 𝑋)
2924, 26, 28syl2anc 587 . . . . . . . 8 ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → ((𝑥 ∈ (1...(♯‘𝐴)) ↦ 𝑋)‘𝑥) = 𝑋)
30 f1of 6612 . . . . . . . . . . . . 13 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑓:(1...(♯‘𝐴))⟶𝐴)
3130ad2antll 729 . . . . . . . . . . . 12 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))⟶𝐴)
3231ffvelrnda 6855 . . . . . . . . . . 11 ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (𝑓𝑥) ∈ 𝐴)
3331feqmptd 6731 . . . . . . . . . . 11 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓 = (𝑥 ∈ (1...(♯‘𝐴)) ↦ (𝑓𝑥)))
34 eqidd 2739 . . . . . . . . . . 11 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴𝑋) = (𝑘𝐴𝑋))
35 eqidd 2739 . . . . . . . . . . 11 (𝑘 = (𝑓𝑥) → 𝑋 = 𝑋)
3632, 33, 34, 35fmptco 6895 . . . . . . . . . 10 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ((𝑘𝐴𝑋) ∘ 𝑓) = (𝑥 ∈ (1...(♯‘𝐴)) ↦ 𝑋))
3736fveq1d 6670 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (((𝑘𝐴𝑋) ∘ 𝑓)‘𝑥) = ((𝑥 ∈ (1...(♯‘𝐴)) ↦ 𝑋)‘𝑥))
3837adantr 484 . . . . . . . 8 ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝑋) ∘ 𝑓)‘𝑥) = ((𝑥 ∈ (1...(♯‘𝐴)) ↦ 𝑋)‘𝑥))
39 elfznn 13020 . . . . . . . . 9 (𝑥 ∈ (1...(♯‘𝐴)) → 𝑥 ∈ ℕ)
40 fvconst2g 6968 . . . . . . . . 9 ((𝑋𝐵𝑥 ∈ ℕ) → ((ℕ × {𝑋})‘𝑥) = 𝑋)
4125, 39, 40syl2an 599 . . . . . . . 8 ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → ((ℕ × {𝑋})‘𝑥) = 𝑋)
4229, 38, 413eqtr4d 2783 . . . . . . 7 ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝑋) ∘ 𝑓)‘𝑥) = ((ℕ × {𝑋})‘𝑥))
4323, 42seqfveq 13479 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (seq1((+g𝐺), ((𝑘𝐴𝑋) ∘ 𝑓))‘(♯‘𝐴)) = (seq1((+g𝐺), (ℕ × {𝑋}))‘(♯‘𝐴)))
44 eqid 2738 . . . . . . 7 (+g𝐺) = (+g𝐺)
45 eqid 2738 . . . . . . 7 (Cntz‘𝐺) = (Cntz‘𝐺)
46 simpl1 1192 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝐺 ∈ Mnd)
47 simpl2 1193 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝐴 ∈ Fin)
4825adantr 484 . . . . . . . 8 ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑘𝐴) → 𝑋𝐵)
4948fmpttd 6883 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴𝑋):𝐴𝐵)
50 eqidd 2739 . . . . . . . . . 10 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑋(+g𝐺)𝑋) = (𝑋(+g𝐺)𝑋))
512, 44, 45elcntzsn 18566 . . . . . . . . . . 11 (𝑋𝐵 → (𝑋 ∈ ((Cntz‘𝐺)‘{𝑋}) ↔ (𝑋𝐵 ∧ (𝑋(+g𝐺)𝑋) = (𝑋(+g𝐺)𝑋))))
5225, 51syl 17 . . . . . . . . . 10 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑋 ∈ ((Cntz‘𝐺)‘{𝑋}) ↔ (𝑋𝐵 ∧ (𝑋(+g𝐺)𝑋) = (𝑋(+g𝐺)𝑋))))
5325, 50, 52mpbir2and 713 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑋 ∈ ((Cntz‘𝐺)‘{𝑋}))
5453snssd 4694 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → {𝑋} ⊆ ((Cntz‘𝐺)‘{𝑋}))
55 snidg 4547 . . . . . . . . . . . 12 (𝑋𝐵𝑋 ∈ {𝑋})
5625, 55syl 17 . . . . . . . . . . 11 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑋 ∈ {𝑋})
5756adantr 484 . . . . . . . . . 10 ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑘𝐴) → 𝑋 ∈ {𝑋})
5857fmpttd 6883 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴𝑋):𝐴⟶{𝑋})
5958frnd 6506 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ran (𝑘𝐴𝑋) ⊆ {𝑋})
6045cntzidss 18579 . . . . . . . 8 (({𝑋} ⊆ ((Cntz‘𝐺)‘{𝑋}) ∧ ran (𝑘𝐴𝑋) ⊆ {𝑋}) → ran (𝑘𝐴𝑋) ⊆ ((Cntz‘𝐺)‘ran (𝑘𝐴𝑋)))
6154, 59, 60syl2anc 587 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ran (𝑘𝐴𝑋) ⊆ ((Cntz‘𝐺)‘ran (𝑘𝐴𝑋)))
62 f1of1 6611 . . . . . . . 8 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑓:(1...(♯‘𝐴))–1-1𝐴)
6362ad2antll 729 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))–1-1𝐴)
64 suppssdm 7865 . . . . . . . . 9 ((𝑘𝐴𝑋) supp (0g𝐺)) ⊆ dom (𝑘𝐴𝑋)
65 eqid 2738 . . . . . . . . . . 11 (𝑘𝐴𝑋) = (𝑘𝐴𝑋)
6665dmmptss 6067 . . . . . . . . . 10 dom (𝑘𝐴𝑋) ⊆ 𝐴
6766a1i 11 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → dom (𝑘𝐴𝑋) ⊆ 𝐴)
6864, 67sstrid 3886 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ((𝑘𝐴𝑋) supp (0g𝐺)) ⊆ 𝐴)
69 f1ofo 6619 . . . . . . . . . 10 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑓:(1...(♯‘𝐴))–onto𝐴)
70 forn 6589 . . . . . . . . . 10 (𝑓:(1...(♯‘𝐴))–onto𝐴 → ran 𝑓 = 𝐴)
7169, 70syl 17 . . . . . . . . 9 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → ran 𝑓 = 𝐴)
7271ad2antll 729 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ran 𝑓 = 𝐴)
7368, 72sseqtrrd 3916 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ((𝑘𝐴𝑋) supp (0g𝐺)) ⊆ ran 𝑓)
74 eqid 2738 . . . . . . 7 (((𝑘𝐴𝑋) ∘ 𝑓) supp (0g𝐺)) = (((𝑘𝐴𝑋) ∘ 𝑓) supp (0g𝐺))
752, 3, 44, 45, 46, 47, 49, 61, 21, 63, 73, 74gsumval3 19139 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝐺 Σg (𝑘𝐴𝑋)) = (seq1((+g𝐺), ((𝑘𝐴𝑋) ∘ 𝑓))‘(♯‘𝐴)))
76 eqid 2738 . . . . . . . 8 seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐺), (ℕ × {𝑋}))
772, 44, 4, 76mulgnn 18343 . . . . . . 7 (((♯‘𝐴) ∈ ℕ ∧ 𝑋𝐵) → ((♯‘𝐴) · 𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘(♯‘𝐴)))
7821, 25, 77syl2anc 587 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ((♯‘𝐴) · 𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘(♯‘𝐴)))
7943, 75, 783eqtr4d 2783 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝐺 Σg (𝑘𝐴𝑋)) = ((♯‘𝐴) · 𝑋))
8079expr 460 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ (♯‘𝐴) ∈ ℕ) → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → (𝐺 Σg (𝑘𝐴𝑋)) = ((♯‘𝐴) · 𝑋)))
8180exlimdv 1939 . . 3 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ (♯‘𝐴) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → (𝐺 Σg (𝑘𝐴𝑋)) = ((♯‘𝐴) · 𝑋)))
8281expimpd 457 . 2 ((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) → (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (𝐺 Σg (𝑘𝐴𝑋)) = ((♯‘𝐴) · 𝑋)))
83 fz1f1o 15153 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
84833ad2ant2 1135 . 2 ((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
8520, 82, 84mpjaod 859 1 ((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) → (𝐺 Σg (𝑘𝐴𝑋)) = ((♯‘𝐴) · 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 846  w3a 1088   = wceq 1542  wex 1786  wcel 2113  wss 3841  c0 4209  {csn 4513  cmpt 5107   × cxp 5517  dom cdm 5519  ran crn 5520  ccom 5523  wf 6329  1-1wf1 6330  ontowfo 6331  1-1-ontowf1o 6332  cfv 6333  (class class class)co 7164   supp csupp 7849  Fincfn 8548  0cc0 10608  1c1 10609  cn 11709  cuz 12317  ...cfz 12974  seqcseq 13453  chash 13775  Basecbs 16579  +gcplusg 16661  0gc0g 16809   Σg cgsu 16810  Mndcmnd 18020  .gcmg 18335  Cntzccntz 18556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-int 4834  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-isom 6342  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-om 7594  df-1st 7707  df-2nd 7708  df-supp 7850  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-1o 8124  df-er 8313  df-en 8549  df-dom 8550  df-sdom 8551  df-fin 8552  df-oi 9040  df-card 9434  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944  df-nn 11710  df-n0 11970  df-z 12056  df-uz 12318  df-fz 12975  df-fzo 13118  df-seq 13454  df-hash 13776  df-0g 16811  df-gsum 16812  df-mgm 17961  df-sgrp 18010  df-mnd 18021  df-mulg 18336  df-cntz 18558
This theorem is referenced by:  gsumconstf  19167  mdetdiagid  21344  chpscmat  21586  chp0mat  21590  chpidmat  21591  tmdgsum2  22840  amgmlem  25719  lgseisenlem4  26106  gsumhashmul  30885
  Copyright terms: Public domain W3C validator