MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumconst Structured version   Visualization version   GIF version

Theorem gsumconst 19976
Description: Sum of a constant series. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
gsumconst.b 𝐵 = (Base‘𝐺)
gsumconst.m · = (.g𝐺)
Assertion
Ref Expression
gsumconst ((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) → (𝐺 Σg (𝑘𝐴𝑋)) = ((♯‘𝐴) · 𝑋))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐺   𝑘,𝑋
Allowed substitution hint:   · (𝑘)

Proof of Theorem gsumconst
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl3 1193 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ 𝐴 = ∅) → 𝑋𝐵)
2 gsumconst.b . . . . . 6 𝐵 = (Base‘𝐺)
3 eqid 2740 . . . . . 6 (0g𝐺) = (0g𝐺)
4 gsumconst.m . . . . . 6 · = (.g𝐺)
52, 3, 4mulg0 19114 . . . . 5 (𝑋𝐵 → (0 · 𝑋) = (0g𝐺))
61, 5syl 17 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ 𝐴 = ∅) → (0 · 𝑋) = (0g𝐺))
7 fveq2 6920 . . . . . . 7 (𝐴 = ∅ → (♯‘𝐴) = (♯‘∅))
87adantl 481 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ 𝐴 = ∅) → (♯‘𝐴) = (♯‘∅))
9 hash0 14416 . . . . . 6 (♯‘∅) = 0
108, 9eqtrdi 2796 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ 𝐴 = ∅) → (♯‘𝐴) = 0)
1110oveq1d 7463 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ 𝐴 = ∅) → ((♯‘𝐴) · 𝑋) = (0 · 𝑋))
12 mpteq1 5259 . . . . . . . 8 (𝐴 = ∅ → (𝑘𝐴𝑋) = (𝑘 ∈ ∅ ↦ 𝑋))
1312adantl 481 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ 𝐴 = ∅) → (𝑘𝐴𝑋) = (𝑘 ∈ ∅ ↦ 𝑋))
14 mpt0 6722 . . . . . . 7 (𝑘 ∈ ∅ ↦ 𝑋) = ∅
1513, 14eqtrdi 2796 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ 𝐴 = ∅) → (𝑘𝐴𝑋) = ∅)
1615oveq2d 7464 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ 𝐴 = ∅) → (𝐺 Σg (𝑘𝐴𝑋)) = (𝐺 Σg ∅))
173gsum0 18722 . . . . 5 (𝐺 Σg ∅) = (0g𝐺)
1816, 17eqtrdi 2796 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ 𝐴 = ∅) → (𝐺 Σg (𝑘𝐴𝑋)) = (0g𝐺))
196, 11, 183eqtr4rd 2791 . . 3 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ 𝐴 = ∅) → (𝐺 Σg (𝑘𝐴𝑋)) = ((♯‘𝐴) · 𝑋))
2019ex 412 . 2 ((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) → (𝐴 = ∅ → (𝐺 Σg (𝑘𝐴𝑋)) = ((♯‘𝐴) · 𝑋)))
21 simprl 770 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ ℕ)
22 nnuz 12946 . . . . . . . 8 ℕ = (ℤ‘1)
2321, 22eleqtrdi 2854 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ (ℤ‘1))
24 simpr 484 . . . . . . . . 9 ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → 𝑥 ∈ (1...(♯‘𝐴)))
25 simpl3 1193 . . . . . . . . . 10 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑋𝐵)
2625adantr 480 . . . . . . . . 9 ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → 𝑋𝐵)
27 eqid 2740 . . . . . . . . . 10 (𝑥 ∈ (1...(♯‘𝐴)) ↦ 𝑋) = (𝑥 ∈ (1...(♯‘𝐴)) ↦ 𝑋)
2827fvmpt2 7040 . . . . . . . . 9 ((𝑥 ∈ (1...(♯‘𝐴)) ∧ 𝑋𝐵) → ((𝑥 ∈ (1...(♯‘𝐴)) ↦ 𝑋)‘𝑥) = 𝑋)
2924, 26, 28syl2anc 583 . . . . . . . 8 ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → ((𝑥 ∈ (1...(♯‘𝐴)) ↦ 𝑋)‘𝑥) = 𝑋)
30 f1of 6862 . . . . . . . . . . . . 13 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑓:(1...(♯‘𝐴))⟶𝐴)
3130ad2antll 728 . . . . . . . . . . . 12 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))⟶𝐴)
3231ffvelcdmda 7118 . . . . . . . . . . 11 ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (𝑓𝑥) ∈ 𝐴)
3331feqmptd 6990 . . . . . . . . . . 11 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓 = (𝑥 ∈ (1...(♯‘𝐴)) ↦ (𝑓𝑥)))
34 eqidd 2741 . . . . . . . . . . 11 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴𝑋) = (𝑘𝐴𝑋))
35 eqidd 2741 . . . . . . . . . . 11 (𝑘 = (𝑓𝑥) → 𝑋 = 𝑋)
3632, 33, 34, 35fmptco 7163 . . . . . . . . . 10 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ((𝑘𝐴𝑋) ∘ 𝑓) = (𝑥 ∈ (1...(♯‘𝐴)) ↦ 𝑋))
3736fveq1d 6922 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (((𝑘𝐴𝑋) ∘ 𝑓)‘𝑥) = ((𝑥 ∈ (1...(♯‘𝐴)) ↦ 𝑋)‘𝑥))
3837adantr 480 . . . . . . . 8 ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝑋) ∘ 𝑓)‘𝑥) = ((𝑥 ∈ (1...(♯‘𝐴)) ↦ 𝑋)‘𝑥))
39 elfznn 13613 . . . . . . . . 9 (𝑥 ∈ (1...(♯‘𝐴)) → 𝑥 ∈ ℕ)
40 fvconst2g 7239 . . . . . . . . 9 ((𝑋𝐵𝑥 ∈ ℕ) → ((ℕ × {𝑋})‘𝑥) = 𝑋)
4125, 39, 40syl2an 595 . . . . . . . 8 ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → ((ℕ × {𝑋})‘𝑥) = 𝑋)
4229, 38, 413eqtr4d 2790 . . . . . . 7 ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝑋) ∘ 𝑓)‘𝑥) = ((ℕ × {𝑋})‘𝑥))
4323, 42seqfveq 14077 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (seq1((+g𝐺), ((𝑘𝐴𝑋) ∘ 𝑓))‘(♯‘𝐴)) = (seq1((+g𝐺), (ℕ × {𝑋}))‘(♯‘𝐴)))
44 eqid 2740 . . . . . . 7 (+g𝐺) = (+g𝐺)
45 eqid 2740 . . . . . . 7 (Cntz‘𝐺) = (Cntz‘𝐺)
46 simpl1 1191 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝐺 ∈ Mnd)
47 simpl2 1192 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝐴 ∈ Fin)
4825adantr 480 . . . . . . . 8 ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑘𝐴) → 𝑋𝐵)
4948fmpttd 7149 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴𝑋):𝐴𝐵)
50 eqidd 2741 . . . . . . . . . 10 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑋(+g𝐺)𝑋) = (𝑋(+g𝐺)𝑋))
512, 44, 45elcntzsn 19365 . . . . . . . . . . 11 (𝑋𝐵 → (𝑋 ∈ ((Cntz‘𝐺)‘{𝑋}) ↔ (𝑋𝐵 ∧ (𝑋(+g𝐺)𝑋) = (𝑋(+g𝐺)𝑋))))
5225, 51syl 17 . . . . . . . . . 10 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑋 ∈ ((Cntz‘𝐺)‘{𝑋}) ↔ (𝑋𝐵 ∧ (𝑋(+g𝐺)𝑋) = (𝑋(+g𝐺)𝑋))))
5325, 50, 52mpbir2and 712 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑋 ∈ ((Cntz‘𝐺)‘{𝑋}))
5453snssd 4834 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → {𝑋} ⊆ ((Cntz‘𝐺)‘{𝑋}))
55 snidg 4682 . . . . . . . . . . . 12 (𝑋𝐵𝑋 ∈ {𝑋})
5625, 55syl 17 . . . . . . . . . . 11 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑋 ∈ {𝑋})
5756adantr 480 . . . . . . . . . 10 ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑘𝐴) → 𝑋 ∈ {𝑋})
5857fmpttd 7149 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴𝑋):𝐴⟶{𝑋})
5958frnd 6755 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ran (𝑘𝐴𝑋) ⊆ {𝑋})
6045cntzidss 19380 . . . . . . . 8 (({𝑋} ⊆ ((Cntz‘𝐺)‘{𝑋}) ∧ ran (𝑘𝐴𝑋) ⊆ {𝑋}) → ran (𝑘𝐴𝑋) ⊆ ((Cntz‘𝐺)‘ran (𝑘𝐴𝑋)))
6154, 59, 60syl2anc 583 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ran (𝑘𝐴𝑋) ⊆ ((Cntz‘𝐺)‘ran (𝑘𝐴𝑋)))
62 f1of1 6861 . . . . . . . 8 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑓:(1...(♯‘𝐴))–1-1𝐴)
6362ad2antll 728 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))–1-1𝐴)
64 suppssdm 8218 . . . . . . . . 9 ((𝑘𝐴𝑋) supp (0g𝐺)) ⊆ dom (𝑘𝐴𝑋)
65 eqid 2740 . . . . . . . . . . 11 (𝑘𝐴𝑋) = (𝑘𝐴𝑋)
6665dmmptss 6272 . . . . . . . . . 10 dom (𝑘𝐴𝑋) ⊆ 𝐴
6766a1i 11 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → dom (𝑘𝐴𝑋) ⊆ 𝐴)
6864, 67sstrid 4020 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ((𝑘𝐴𝑋) supp (0g𝐺)) ⊆ 𝐴)
69 f1ofo 6869 . . . . . . . . . 10 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑓:(1...(♯‘𝐴))–onto𝐴)
70 forn 6837 . . . . . . . . . 10 (𝑓:(1...(♯‘𝐴))–onto𝐴 → ran 𝑓 = 𝐴)
7169, 70syl 17 . . . . . . . . 9 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → ran 𝑓 = 𝐴)
7271ad2antll 728 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ran 𝑓 = 𝐴)
7368, 72sseqtrrd 4050 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ((𝑘𝐴𝑋) supp (0g𝐺)) ⊆ ran 𝑓)
74 eqid 2740 . . . . . . 7 (((𝑘𝐴𝑋) ∘ 𝑓) supp (0g𝐺)) = (((𝑘𝐴𝑋) ∘ 𝑓) supp (0g𝐺))
752, 3, 44, 45, 46, 47, 49, 61, 21, 63, 73, 74gsumval3 19949 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝐺 Σg (𝑘𝐴𝑋)) = (seq1((+g𝐺), ((𝑘𝐴𝑋) ∘ 𝑓))‘(♯‘𝐴)))
76 eqid 2740 . . . . . . . 8 seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐺), (ℕ × {𝑋}))
772, 44, 4, 76mulgnn 19115 . . . . . . 7 (((♯‘𝐴) ∈ ℕ ∧ 𝑋𝐵) → ((♯‘𝐴) · 𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘(♯‘𝐴)))
7821, 25, 77syl2anc 583 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ((♯‘𝐴) · 𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘(♯‘𝐴)))
7943, 75, 783eqtr4d 2790 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝐺 Σg (𝑘𝐴𝑋)) = ((♯‘𝐴) · 𝑋))
8079expr 456 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ (♯‘𝐴) ∈ ℕ) → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → (𝐺 Σg (𝑘𝐴𝑋)) = ((♯‘𝐴) · 𝑋)))
8180exlimdv 1932 . . 3 (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) ∧ (♯‘𝐴) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → (𝐺 Σg (𝑘𝐴𝑋)) = ((♯‘𝐴) · 𝑋)))
8281expimpd 453 . 2 ((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) → (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (𝐺 Σg (𝑘𝐴𝑋)) = ((♯‘𝐴) · 𝑋)))
83 fz1f1o 15758 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
84833ad2ant2 1134 . 2 ((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
8520, 82, 84mpjaod 859 1 ((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) → (𝐺 Σg (𝑘𝐴𝑋)) = ((♯‘𝐴) · 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wss 3976  c0 4352  {csn 4648  cmpt 5249   × cxp 5698  dom cdm 5700  ran crn 5701  ccom 5704  wf 6569  1-1wf1 6570  ontowfo 6571  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448   supp csupp 8201  Fincfn 9003  0cc0 11184  1c1 11185  cn 12293  cuz 12903  ...cfz 13567  seqcseq 14052  chash 14379  Basecbs 17258  +gcplusg 17311  0gc0g 17499   Σg cgsu 17500  Mndcmnd 18772  .gcmg 19107  Cntzccntz 19355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-0g 17501  df-gsum 17502  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mulg 19108  df-cntz 19357
This theorem is referenced by:  gsumconstf  19977  mdetdiagid  22627  chpscmat  22869  chp0mat  22873  chpidmat  22874  tmdgsum2  24125  amgmlem  27051  lgseisenlem4  27440  gsumhashmul  33040
  Copyright terms: Public domain W3C validator