MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrsblre Structured version   Visualization version   GIF version

Theorem xrsblre 24751
Description: Any ball of the metric of the extended reals centered on an element of is entirely contained in . (Contributed by Mario Carneiro, 4-Sep-2015.)
Hypothesis
Ref Expression
xrsxmet.1 𝐷 = (dist‘ℝ*𝑠)
Assertion
Ref Expression
xrsblre ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ ℝ)

Proof of Theorem xrsblre
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rexr 11281 . . 3 (𝑃 ∈ ℝ → 𝑃 ∈ ℝ*)
2 xrsxmet.1 . . . . 5 𝐷 = (dist‘ℝ*𝑠)
32xrsxmet 24749 . . . 4 𝐷 ∈ (∞Met‘ℝ*)
4 eqid 2735 . . . . 5 (𝐷 “ ℝ) = (𝐷 “ ℝ)
54blssec 24374 . . . 4 ((𝐷 ∈ (∞Met‘ℝ*) ∧ 𝑃 ∈ ℝ*𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ [𝑃](𝐷 “ ℝ))
63, 5mp3an1 1450 . . 3 ((𝑃 ∈ ℝ*𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ [𝑃](𝐷 “ ℝ))
71, 6sylan 580 . 2 ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ [𝑃](𝐷 “ ℝ))
8 vex 3463 . . . . 5 𝑥 ∈ V
9 simpl 482 . . . . 5 ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → 𝑃 ∈ ℝ)
10 elecg 8763 . . . . 5 ((𝑥 ∈ V ∧ 𝑃 ∈ ℝ) → (𝑥 ∈ [𝑃](𝐷 “ ℝ) ↔ 𝑃(𝐷 “ ℝ)𝑥))
118, 9, 10sylancr 587 . . . 4 ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ [𝑃](𝐷 “ ℝ) ↔ 𝑃(𝐷 “ ℝ)𝑥))
124xmeterval 24371 . . . . . 6 (𝐷 ∈ (∞Met‘ℝ*) → (𝑃(𝐷 “ ℝ)𝑥 ↔ (𝑃 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)))
133, 12ax-mp 5 . . . . 5 (𝑃(𝐷 “ ℝ)𝑥 ↔ (𝑃 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ))
14 simpr 484 . . . . . . . 8 ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 = 𝑥) → 𝑃 = 𝑥)
15 simplll 774 . . . . . . . 8 ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 = 𝑥) → 𝑃 ∈ ℝ)
1614, 15eqeltrrd 2835 . . . . . . 7 ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 = 𝑥) → 𝑥 ∈ ℝ)
17 simplr3 1218 . . . . . . . . 9 ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃𝑥) → (𝑃𝐷𝑥) ∈ ℝ)
18 simplr1 1216 . . . . . . . . . 10 ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃𝑥) → 𝑃 ∈ ℝ*)
19 simplr2 1217 . . . . . . . . . 10 ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃𝑥) → 𝑥 ∈ ℝ*)
20 simpr 484 . . . . . . . . . 10 ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃𝑥) → 𝑃𝑥)
212xrsdsreclb 21381 . . . . . . . . . 10 ((𝑃 ∈ ℝ*𝑥 ∈ ℝ*𝑃𝑥) → ((𝑃𝐷𝑥) ∈ ℝ ↔ (𝑃 ∈ ℝ ∧ 𝑥 ∈ ℝ)))
2218, 19, 20, 21syl3anc 1373 . . . . . . . . 9 ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃𝑥) → ((𝑃𝐷𝑥) ∈ ℝ ↔ (𝑃 ∈ ℝ ∧ 𝑥 ∈ ℝ)))
2317, 22mpbid 232 . . . . . . . 8 ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃𝑥) → (𝑃 ∈ ℝ ∧ 𝑥 ∈ ℝ))
2423simprd 495 . . . . . . 7 ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃𝑥) → 𝑥 ∈ ℝ)
2516, 24pm2.61dane 3019 . . . . . 6 (((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) → 𝑥 ∈ ℝ)
2625ex 412 . . . . 5 ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → ((𝑃 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ) → 𝑥 ∈ ℝ))
2713, 26biimtrid 242 . . . 4 ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → (𝑃(𝐷 “ ℝ)𝑥𝑥 ∈ ℝ))
2811, 27sylbid 240 . . 3 ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ [𝑃](𝐷 “ ℝ) → 𝑥 ∈ ℝ))
2928ssrdv 3964 . 2 ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → [𝑃](𝐷 “ ℝ) ⊆ ℝ)
307, 29sstrd 3969 1 ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  Vcvv 3459  wss 3926   class class class wbr 5119  ccnv 5653  cima 5657  cfv 6531  (class class class)co 7405  [cec 8717  cr 11128  *cxr 11268  distcds 17280  *𝑠cxrs 17514  ∞Metcxmet 21300  ballcbl 21302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-ec 8721  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-icc 13369  df-fz 13525  df-seq 14020  df-exp 14080  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-struct 17166  df-slot 17201  df-ndx 17213  df-base 17229  df-plusg 17284  df-mulr 17285  df-tset 17290  df-ple 17291  df-ds 17293  df-xrs 17516  df-psmet 21307  df-xmet 21308  df-bl 21310
This theorem is referenced by:  xrsmopn  24752
  Copyright terms: Public domain W3C validator