![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrsblre | Structured version Visualization version GIF version |
Description: Any ball of the metric of the extended reals centered on an element of ℝ is entirely contained in ℝ. (Contributed by Mario Carneiro, 4-Sep-2015.) |
Ref | Expression |
---|---|
xrsxmet.1 | ⊢ 𝐷 = (dist‘ℝ*𝑠) |
Ref | Expression |
---|---|
xrsblre | ⊢ ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexr 11305 | . . 3 ⊢ (𝑃 ∈ ℝ → 𝑃 ∈ ℝ*) | |
2 | xrsxmet.1 | . . . . 5 ⊢ 𝐷 = (dist‘ℝ*𝑠) | |
3 | 2 | xrsxmet 24845 | . . . 4 ⊢ 𝐷 ∈ (∞Met‘ℝ*) |
4 | eqid 2735 | . . . . 5 ⊢ (◡𝐷 “ ℝ) = (◡𝐷 “ ℝ) | |
5 | 4 | blssec 24461 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘ℝ*) ∧ 𝑃 ∈ ℝ* ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ [𝑃](◡𝐷 “ ℝ)) |
6 | 3, 5 | mp3an1 1447 | . . 3 ⊢ ((𝑃 ∈ ℝ* ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ [𝑃](◡𝐷 “ ℝ)) |
7 | 1, 6 | sylan 580 | . 2 ⊢ ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ [𝑃](◡𝐷 “ ℝ)) |
8 | vex 3482 | . . . . 5 ⊢ 𝑥 ∈ V | |
9 | simpl 482 | . . . . 5 ⊢ ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → 𝑃 ∈ ℝ) | |
10 | elecg 8788 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ 𝑃 ∈ ℝ) → (𝑥 ∈ [𝑃](◡𝐷 “ ℝ) ↔ 𝑃(◡𝐷 “ ℝ)𝑥)) | |
11 | 8, 9, 10 | sylancr 587 | . . . 4 ⊢ ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ [𝑃](◡𝐷 “ ℝ) ↔ 𝑃(◡𝐷 “ ℝ)𝑥)) |
12 | 4 | xmeterval 24458 | . . . . . 6 ⊢ (𝐷 ∈ (∞Met‘ℝ*) → (𝑃(◡𝐷 “ ℝ)𝑥 ↔ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ))) |
13 | 3, 12 | ax-mp 5 | . . . . 5 ⊢ (𝑃(◡𝐷 “ ℝ)𝑥 ↔ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) |
14 | simpr 484 | . . . . . . . 8 ⊢ ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 = 𝑥) → 𝑃 = 𝑥) | |
15 | simplll 775 | . . . . . . . 8 ⊢ ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 = 𝑥) → 𝑃 ∈ ℝ) | |
16 | 14, 15 | eqeltrrd 2840 | . . . . . . 7 ⊢ ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 = 𝑥) → 𝑥 ∈ ℝ) |
17 | simplr3 1216 | . . . . . . . . 9 ⊢ ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 ≠ 𝑥) → (𝑃𝐷𝑥) ∈ ℝ) | |
18 | simplr1 1214 | . . . . . . . . . 10 ⊢ ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 ≠ 𝑥) → 𝑃 ∈ ℝ*) | |
19 | simplr2 1215 | . . . . . . . . . 10 ⊢ ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 ≠ 𝑥) → 𝑥 ∈ ℝ*) | |
20 | simpr 484 | . . . . . . . . . 10 ⊢ ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 ≠ 𝑥) → 𝑃 ≠ 𝑥) | |
21 | 2 | xrsdsreclb 21449 | . . . . . . . . . 10 ⊢ ((𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ 𝑃 ≠ 𝑥) → ((𝑃𝐷𝑥) ∈ ℝ ↔ (𝑃 ∈ ℝ ∧ 𝑥 ∈ ℝ))) |
22 | 18, 19, 20, 21 | syl3anc 1370 | . . . . . . . . 9 ⊢ ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 ≠ 𝑥) → ((𝑃𝐷𝑥) ∈ ℝ ↔ (𝑃 ∈ ℝ ∧ 𝑥 ∈ ℝ))) |
23 | 17, 22 | mpbid 232 | . . . . . . . 8 ⊢ ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 ≠ 𝑥) → (𝑃 ∈ ℝ ∧ 𝑥 ∈ ℝ)) |
24 | 23 | simprd 495 | . . . . . . 7 ⊢ ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 ≠ 𝑥) → 𝑥 ∈ ℝ) |
25 | 16, 24 | pm2.61dane 3027 | . . . . . 6 ⊢ (((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) → 𝑥 ∈ ℝ) |
26 | 25 | ex 412 | . . . . 5 ⊢ ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → ((𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ) → 𝑥 ∈ ℝ)) |
27 | 13, 26 | biimtrid 242 | . . . 4 ⊢ ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → (𝑃(◡𝐷 “ ℝ)𝑥 → 𝑥 ∈ ℝ)) |
28 | 11, 27 | sylbid 240 | . . 3 ⊢ ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ [𝑃](◡𝐷 “ ℝ) → 𝑥 ∈ ℝ)) |
29 | 28 | ssrdv 4001 | . 2 ⊢ ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → [𝑃](◡𝐷 “ ℝ) ⊆ ℝ) |
30 | 7, 29 | sstrd 4006 | 1 ⊢ ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 Vcvv 3478 ⊆ wss 3963 class class class wbr 5148 ◡ccnv 5688 “ cima 5692 ‘cfv 6563 (class class class)co 7431 [cec 8742 ℝcr 11152 ℝ*cxr 11292 distcds 17307 ℝ*𝑠cxrs 17547 ∞Metcxmet 21367 ballcbl 21369 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-ec 8746 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-icc 13391 df-fz 13545 df-seq 14040 df-exp 14100 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-struct 17181 df-slot 17216 df-ndx 17228 df-base 17246 df-plusg 17311 df-mulr 17312 df-tset 17317 df-ple 17318 df-ds 17320 df-xrs 17549 df-psmet 21374 df-xmet 21375 df-bl 21377 |
This theorem is referenced by: xrsmopn 24848 |
Copyright terms: Public domain | W3C validator |