| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrsblre | Structured version Visualization version GIF version | ||
| Description: Any ball of the metric of the extended reals centered on an element of ℝ is entirely contained in ℝ. (Contributed by Mario Carneiro, 4-Sep-2015.) |
| Ref | Expression |
|---|---|
| xrsxmet.1 | ⊢ 𝐷 = (dist‘ℝ*𝑠) |
| Ref | Expression |
|---|---|
| xrsblre | ⊢ ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexr 11158 | . . 3 ⊢ (𝑃 ∈ ℝ → 𝑃 ∈ ℝ*) | |
| 2 | xrsxmet.1 | . . . . 5 ⊢ 𝐷 = (dist‘ℝ*𝑠) | |
| 3 | 2 | xrsxmet 24725 | . . . 4 ⊢ 𝐷 ∈ (∞Met‘ℝ*) |
| 4 | eqid 2731 | . . . . 5 ⊢ (◡𝐷 “ ℝ) = (◡𝐷 “ ℝ) | |
| 5 | 4 | blssec 24350 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘ℝ*) ∧ 𝑃 ∈ ℝ* ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ [𝑃](◡𝐷 “ ℝ)) |
| 6 | 3, 5 | mp3an1 1450 | . . 3 ⊢ ((𝑃 ∈ ℝ* ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ [𝑃](◡𝐷 “ ℝ)) |
| 7 | 1, 6 | sylan 580 | . 2 ⊢ ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ [𝑃](◡𝐷 “ ℝ)) |
| 8 | vex 3440 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 9 | simpl 482 | . . . . 5 ⊢ ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → 𝑃 ∈ ℝ) | |
| 10 | elecg 8666 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ 𝑃 ∈ ℝ) → (𝑥 ∈ [𝑃](◡𝐷 “ ℝ) ↔ 𝑃(◡𝐷 “ ℝ)𝑥)) | |
| 11 | 8, 9, 10 | sylancr 587 | . . . 4 ⊢ ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ [𝑃](◡𝐷 “ ℝ) ↔ 𝑃(◡𝐷 “ ℝ)𝑥)) |
| 12 | 4 | xmeterval 24347 | . . . . . 6 ⊢ (𝐷 ∈ (∞Met‘ℝ*) → (𝑃(◡𝐷 “ ℝ)𝑥 ↔ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ))) |
| 13 | 3, 12 | ax-mp 5 | . . . . 5 ⊢ (𝑃(◡𝐷 “ ℝ)𝑥 ↔ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) |
| 14 | simpr 484 | . . . . . . . 8 ⊢ ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 = 𝑥) → 𝑃 = 𝑥) | |
| 15 | simplll 774 | . . . . . . . 8 ⊢ ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 = 𝑥) → 𝑃 ∈ ℝ) | |
| 16 | 14, 15 | eqeltrrd 2832 | . . . . . . 7 ⊢ ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 = 𝑥) → 𝑥 ∈ ℝ) |
| 17 | simplr3 1218 | . . . . . . . . 9 ⊢ ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 ≠ 𝑥) → (𝑃𝐷𝑥) ∈ ℝ) | |
| 18 | simplr1 1216 | . . . . . . . . . 10 ⊢ ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 ≠ 𝑥) → 𝑃 ∈ ℝ*) | |
| 19 | simplr2 1217 | . . . . . . . . . 10 ⊢ ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 ≠ 𝑥) → 𝑥 ∈ ℝ*) | |
| 20 | simpr 484 | . . . . . . . . . 10 ⊢ ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 ≠ 𝑥) → 𝑃 ≠ 𝑥) | |
| 21 | 2 | xrsdsreclb 21350 | . . . . . . . . . 10 ⊢ ((𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ 𝑃 ≠ 𝑥) → ((𝑃𝐷𝑥) ∈ ℝ ↔ (𝑃 ∈ ℝ ∧ 𝑥 ∈ ℝ))) |
| 22 | 18, 19, 20, 21 | syl3anc 1373 | . . . . . . . . 9 ⊢ ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 ≠ 𝑥) → ((𝑃𝐷𝑥) ∈ ℝ ↔ (𝑃 ∈ ℝ ∧ 𝑥 ∈ ℝ))) |
| 23 | 17, 22 | mpbid 232 | . . . . . . . 8 ⊢ ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 ≠ 𝑥) → (𝑃 ∈ ℝ ∧ 𝑥 ∈ ℝ)) |
| 24 | 23 | simprd 495 | . . . . . . 7 ⊢ ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 ≠ 𝑥) → 𝑥 ∈ ℝ) |
| 25 | 16, 24 | pm2.61dane 3015 | . . . . . 6 ⊢ (((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) → 𝑥 ∈ ℝ) |
| 26 | 25 | ex 412 | . . . . 5 ⊢ ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → ((𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ) → 𝑥 ∈ ℝ)) |
| 27 | 13, 26 | biimtrid 242 | . . . 4 ⊢ ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → (𝑃(◡𝐷 “ ℝ)𝑥 → 𝑥 ∈ ℝ)) |
| 28 | 11, 27 | sylbid 240 | . . 3 ⊢ ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ [𝑃](◡𝐷 “ ℝ) → 𝑥 ∈ ℝ)) |
| 29 | 28 | ssrdv 3935 | . 2 ⊢ ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → [𝑃](◡𝐷 “ ℝ) ⊆ ℝ) |
| 30 | 7, 29 | sstrd 3940 | 1 ⊢ ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ⊆ wss 3897 class class class wbr 5089 ◡ccnv 5613 “ cima 5617 ‘cfv 6481 (class class class)co 7346 [cec 8620 ℝcr 11005 ℝ*cxr 11145 distcds 17170 ℝ*𝑠cxrs 17404 ∞Metcxmet 21276 ballcbl 21278 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-ec 8624 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-icc 13252 df-fz 13408 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-mulr 17175 df-tset 17180 df-ple 17181 df-ds 17183 df-xrs 17406 df-psmet 21283 df-xmet 21284 df-bl 21286 |
| This theorem is referenced by: xrsmopn 24728 |
| Copyright terms: Public domain | W3C validator |