Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xrsblre | Structured version Visualization version GIF version |
Description: Any ball of the metric of the extended reals centered on an element of ℝ is entirely contained in ℝ. (Contributed by Mario Carneiro, 4-Sep-2015.) |
Ref | Expression |
---|---|
xrsxmet.1 | ⊢ 𝐷 = (dist‘ℝ*𝑠) |
Ref | Expression |
---|---|
xrsblre | ⊢ ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexr 11101 | . . 3 ⊢ (𝑃 ∈ ℝ → 𝑃 ∈ ℝ*) | |
2 | xrsxmet.1 | . . . . 5 ⊢ 𝐷 = (dist‘ℝ*𝑠) | |
3 | 2 | xrsxmet 24055 | . . . 4 ⊢ 𝐷 ∈ (∞Met‘ℝ*) |
4 | eqid 2737 | . . . . 5 ⊢ (◡𝐷 “ ℝ) = (◡𝐷 “ ℝ) | |
5 | 4 | blssec 23671 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘ℝ*) ∧ 𝑃 ∈ ℝ* ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ [𝑃](◡𝐷 “ ℝ)) |
6 | 3, 5 | mp3an1 1447 | . . 3 ⊢ ((𝑃 ∈ ℝ* ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ [𝑃](◡𝐷 “ ℝ)) |
7 | 1, 6 | sylan 580 | . 2 ⊢ ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ [𝑃](◡𝐷 “ ℝ)) |
8 | vex 3445 | . . . . 5 ⊢ 𝑥 ∈ V | |
9 | simpl 483 | . . . . 5 ⊢ ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → 𝑃 ∈ ℝ) | |
10 | elecg 8591 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ 𝑃 ∈ ℝ) → (𝑥 ∈ [𝑃](◡𝐷 “ ℝ) ↔ 𝑃(◡𝐷 “ ℝ)𝑥)) | |
11 | 8, 9, 10 | sylancr 587 | . . . 4 ⊢ ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ [𝑃](◡𝐷 “ ℝ) ↔ 𝑃(◡𝐷 “ ℝ)𝑥)) |
12 | 4 | xmeterval 23668 | . . . . . 6 ⊢ (𝐷 ∈ (∞Met‘ℝ*) → (𝑃(◡𝐷 “ ℝ)𝑥 ↔ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ))) |
13 | 3, 12 | ax-mp 5 | . . . . 5 ⊢ (𝑃(◡𝐷 “ ℝ)𝑥 ↔ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) |
14 | simpr 485 | . . . . . . . 8 ⊢ ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 = 𝑥) → 𝑃 = 𝑥) | |
15 | simplll 772 | . . . . . . . 8 ⊢ ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 = 𝑥) → 𝑃 ∈ ℝ) | |
16 | 14, 15 | eqeltrrd 2839 | . . . . . . 7 ⊢ ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 = 𝑥) → 𝑥 ∈ ℝ) |
17 | simplr3 1216 | . . . . . . . . 9 ⊢ ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 ≠ 𝑥) → (𝑃𝐷𝑥) ∈ ℝ) | |
18 | simplr1 1214 | . . . . . . . . . 10 ⊢ ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 ≠ 𝑥) → 𝑃 ∈ ℝ*) | |
19 | simplr2 1215 | . . . . . . . . . 10 ⊢ ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 ≠ 𝑥) → 𝑥 ∈ ℝ*) | |
20 | simpr 485 | . . . . . . . . . 10 ⊢ ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 ≠ 𝑥) → 𝑃 ≠ 𝑥) | |
21 | 2 | xrsdsreclb 20728 | . . . . . . . . . 10 ⊢ ((𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ 𝑃 ≠ 𝑥) → ((𝑃𝐷𝑥) ∈ ℝ ↔ (𝑃 ∈ ℝ ∧ 𝑥 ∈ ℝ))) |
22 | 18, 19, 20, 21 | syl3anc 1370 | . . . . . . . . 9 ⊢ ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 ≠ 𝑥) → ((𝑃𝐷𝑥) ∈ ℝ ↔ (𝑃 ∈ ℝ ∧ 𝑥 ∈ ℝ))) |
23 | 17, 22 | mpbid 231 | . . . . . . . 8 ⊢ ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 ≠ 𝑥) → (𝑃 ∈ ℝ ∧ 𝑥 ∈ ℝ)) |
24 | 23 | simprd 496 | . . . . . . 7 ⊢ ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 ≠ 𝑥) → 𝑥 ∈ ℝ) |
25 | 16, 24 | pm2.61dane 3030 | . . . . . 6 ⊢ (((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) → 𝑥 ∈ ℝ) |
26 | 25 | ex 413 | . . . . 5 ⊢ ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → ((𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ) → 𝑥 ∈ ℝ)) |
27 | 13, 26 | biimtrid 241 | . . . 4 ⊢ ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → (𝑃(◡𝐷 “ ℝ)𝑥 → 𝑥 ∈ ℝ)) |
28 | 11, 27 | sylbid 239 | . . 3 ⊢ ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ [𝑃](◡𝐷 “ ℝ) → 𝑥 ∈ ℝ)) |
29 | 28 | ssrdv 3937 | . 2 ⊢ ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → [𝑃](◡𝐷 “ ℝ) ⊆ ℝ) |
30 | 7, 29 | sstrd 3941 | 1 ⊢ ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ≠ wne 2941 Vcvv 3441 ⊆ wss 3897 class class class wbr 5087 ◡ccnv 5607 “ cima 5611 ‘cfv 6466 (class class class)co 7317 [cec 8546 ℝcr 10950 ℝ*cxr 11088 distcds 17048 ℝ*𝑠cxrs 17288 ∞Metcxmet 20665 ballcbl 20667 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 ax-cnex 11007 ax-resscn 11008 ax-1cn 11009 ax-icn 11010 ax-addcl 11011 ax-addrcl 11012 ax-mulcl 11013 ax-mulrcl 11014 ax-mulcom 11015 ax-addass 11016 ax-mulass 11017 ax-distr 11018 ax-i2m1 11019 ax-1ne0 11020 ax-1rid 11021 ax-rnegex 11022 ax-rrecex 11023 ax-cnre 11024 ax-pre-lttri 11025 ax-pre-lttrn 11026 ax-pre-ltadd 11027 ax-pre-mulgt0 11028 ax-pre-sup 11029 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5563 df-we 5565 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-pred 6225 df-ord 6292 df-on 6293 df-lim 6294 df-suc 6295 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-riota 7274 df-ov 7320 df-oprab 7321 df-mpo 7322 df-om 7760 df-1st 7878 df-2nd 7879 df-frecs 8146 df-wrecs 8177 df-recs 8251 df-rdg 8290 df-1o 8346 df-er 8548 df-ec 8550 df-map 8667 df-en 8784 df-dom 8785 df-sdom 8786 df-fin 8787 df-sup 9278 df-pnf 11091 df-mnf 11092 df-xr 11093 df-ltxr 11094 df-le 11095 df-sub 11287 df-neg 11288 df-div 11713 df-nn 12054 df-2 12116 df-3 12117 df-4 12118 df-5 12119 df-6 12120 df-7 12121 df-8 12122 df-9 12123 df-n0 12314 df-z 12400 df-dec 12518 df-uz 12663 df-rp 12811 df-xneg 12928 df-xadd 12929 df-xmul 12930 df-icc 13166 df-fz 13320 df-seq 13802 df-exp 13863 df-cj 14889 df-re 14890 df-im 14891 df-sqrt 15025 df-abs 15026 df-struct 16925 df-slot 16960 df-ndx 16972 df-base 16990 df-plusg 17052 df-mulr 17053 df-tset 17058 df-ple 17059 df-ds 17061 df-xrs 17290 df-psmet 20672 df-xmet 20673 df-bl 20675 |
This theorem is referenced by: xrsmopn 24058 |
Copyright terms: Public domain | W3C validator |