MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrsblre Structured version   Visualization version   GIF version

Theorem xrsblre 23116
Description: Any ball of the metric of the extended reals centered on an element of is entirely contained in . (Contributed by Mario Carneiro, 4-Sep-2015.)
Hypothesis
Ref Expression
xrsxmet.1 𝐷 = (dist‘ℝ*𝑠)
Assertion
Ref Expression
xrsblre ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ ℝ)

Proof of Theorem xrsblre
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rexr 10480 . . 3 (𝑃 ∈ ℝ → 𝑃 ∈ ℝ*)
2 xrsxmet.1 . . . . 5 𝐷 = (dist‘ℝ*𝑠)
32xrsxmet 23114 . . . 4 𝐷 ∈ (∞Met‘ℝ*)
4 eqid 2772 . . . . 5 (𝐷 “ ℝ) = (𝐷 “ ℝ)
54blssec 22742 . . . 4 ((𝐷 ∈ (∞Met‘ℝ*) ∧ 𝑃 ∈ ℝ*𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ [𝑃](𝐷 “ ℝ))
63, 5mp3an1 1427 . . 3 ((𝑃 ∈ ℝ*𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ [𝑃](𝐷 “ ℝ))
71, 6sylan 572 . 2 ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ [𝑃](𝐷 “ ℝ))
8 vex 3412 . . . . 5 𝑥 ∈ V
9 simpl 475 . . . . 5 ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → 𝑃 ∈ ℝ)
10 elecg 8126 . . . . 5 ((𝑥 ∈ V ∧ 𝑃 ∈ ℝ) → (𝑥 ∈ [𝑃](𝐷 “ ℝ) ↔ 𝑃(𝐷 “ ℝ)𝑥))
118, 9, 10sylancr 578 . . . 4 ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ [𝑃](𝐷 “ ℝ) ↔ 𝑃(𝐷 “ ℝ)𝑥))
124xmeterval 22739 . . . . . 6 (𝐷 ∈ (∞Met‘ℝ*) → (𝑃(𝐷 “ ℝ)𝑥 ↔ (𝑃 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)))
133, 12ax-mp 5 . . . . 5 (𝑃(𝐷 “ ℝ)𝑥 ↔ (𝑃 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ))
14 simpr 477 . . . . . . . 8 ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 = 𝑥) → 𝑃 = 𝑥)
15 simplll 762 . . . . . . . 8 ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 = 𝑥) → 𝑃 ∈ ℝ)
1614, 15eqeltrrd 2861 . . . . . . 7 ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 = 𝑥) → 𝑥 ∈ ℝ)
17 simplr3 1197 . . . . . . . . 9 ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃𝑥) → (𝑃𝐷𝑥) ∈ ℝ)
18 simplr1 1195 . . . . . . . . . 10 ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃𝑥) → 𝑃 ∈ ℝ*)
19 simplr2 1196 . . . . . . . . . 10 ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃𝑥) → 𝑥 ∈ ℝ*)
20 simpr 477 . . . . . . . . . 10 ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃𝑥) → 𝑃𝑥)
212xrsdsreclb 20288 . . . . . . . . . 10 ((𝑃 ∈ ℝ*𝑥 ∈ ℝ*𝑃𝑥) → ((𝑃𝐷𝑥) ∈ ℝ ↔ (𝑃 ∈ ℝ ∧ 𝑥 ∈ ℝ)))
2218, 19, 20, 21syl3anc 1351 . . . . . . . . 9 ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃𝑥) → ((𝑃𝐷𝑥) ∈ ℝ ↔ (𝑃 ∈ ℝ ∧ 𝑥 ∈ ℝ)))
2317, 22mpbid 224 . . . . . . . 8 ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃𝑥) → (𝑃 ∈ ℝ ∧ 𝑥 ∈ ℝ))
2423simprd 488 . . . . . . 7 ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃𝑥) → 𝑥 ∈ ℝ)
2516, 24pm2.61dane 3049 . . . . . 6 (((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) → 𝑥 ∈ ℝ)
2625ex 405 . . . . 5 ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → ((𝑃 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ) → 𝑥 ∈ ℝ))
2713, 26syl5bi 234 . . . 4 ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → (𝑃(𝐷 “ ℝ)𝑥𝑥 ∈ ℝ))
2811, 27sylbid 232 . . 3 ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ [𝑃](𝐷 “ ℝ) → 𝑥 ∈ ℝ))
2928ssrdv 3858 . 2 ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → [𝑃](𝐷 “ ℝ) ⊆ ℝ)
307, 29sstrd 3862 1 ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2050  wne 2961  Vcvv 3409  wss 3823   class class class wbr 4923  ccnv 5400  cima 5404  cfv 6182  (class class class)co 6970  [cec 8081  cr 10328  *cxr 10467  distcds 16424  *𝑠cxrs 16623  ∞Metcxmet 20226  ballcbl 20228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10385  ax-resscn 10386  ax-1cn 10387  ax-icn 10388  ax-addcl 10389  ax-addrcl 10390  ax-mulcl 10391  ax-mulrcl 10392  ax-mulcom 10393  ax-addass 10394  ax-mulass 10395  ax-distr 10396  ax-i2m1 10397  ax-1ne0 10398  ax-1rid 10399  ax-rnegex 10400  ax-rrecex 10401  ax-cnre 10402  ax-pre-lttri 10403  ax-pre-lttrn 10404  ax-pre-ltadd 10405  ax-pre-mulgt0 10406  ax-pre-sup 10407
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-pss 3839  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-int 4744  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5306  df-eprel 5311  df-po 5320  df-so 5321  df-fr 5360  df-we 5362  df-xp 5407  df-rel 5408  df-cnv 5409  df-co 5410  df-dm 5411  df-rn 5412  df-res 5413  df-ima 5414  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-1st 7495  df-2nd 7496  df-wrecs 7744  df-recs 7806  df-rdg 7844  df-1o 7899  df-oadd 7903  df-er 8083  df-ec 8085  df-map 8202  df-en 8301  df-dom 8302  df-sdom 8303  df-fin 8304  df-sup 8695  df-pnf 10470  df-mnf 10471  df-xr 10472  df-ltxr 10473  df-le 10474  df-sub 10666  df-neg 10667  df-div 11093  df-nn 11434  df-2 11497  df-3 11498  df-4 11499  df-5 11500  df-6 11501  df-7 11502  df-8 11503  df-9 11504  df-n0 11702  df-z 11788  df-dec 11906  df-uz 12053  df-rp 12199  df-xneg 12318  df-xadd 12319  df-xmul 12320  df-icc 12555  df-fz 12703  df-seq 13179  df-exp 13239  df-cj 14313  df-re 14314  df-im 14315  df-sqrt 14449  df-abs 14450  df-struct 16335  df-ndx 16336  df-slot 16337  df-base 16339  df-plusg 16428  df-mulr 16429  df-tset 16434  df-ple 16435  df-ds 16437  df-xrs 16625  df-psmet 20233  df-xmet 20234  df-bl 20236
This theorem is referenced by:  xrsmopn  23117
  Copyright terms: Public domain W3C validator