MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrsblre Structured version   Visualization version   GIF version

Theorem xrsblre 23974
Description: Any ball of the metric of the extended reals centered on an element of is entirely contained in . (Contributed by Mario Carneiro, 4-Sep-2015.)
Hypothesis
Ref Expression
xrsxmet.1 𝐷 = (dist‘ℝ*𝑠)
Assertion
Ref Expression
xrsblre ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ ℝ)

Proof of Theorem xrsblre
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rexr 11021 . . 3 (𝑃 ∈ ℝ → 𝑃 ∈ ℝ*)
2 xrsxmet.1 . . . . 5 𝐷 = (dist‘ℝ*𝑠)
32xrsxmet 23972 . . . 4 𝐷 ∈ (∞Met‘ℝ*)
4 eqid 2738 . . . . 5 (𝐷 “ ℝ) = (𝐷 “ ℝ)
54blssec 23588 . . . 4 ((𝐷 ∈ (∞Met‘ℝ*) ∧ 𝑃 ∈ ℝ*𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ [𝑃](𝐷 “ ℝ))
63, 5mp3an1 1447 . . 3 ((𝑃 ∈ ℝ*𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ [𝑃](𝐷 “ ℝ))
71, 6sylan 580 . 2 ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ [𝑃](𝐷 “ ℝ))
8 vex 3436 . . . . 5 𝑥 ∈ V
9 simpl 483 . . . . 5 ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → 𝑃 ∈ ℝ)
10 elecg 8541 . . . . 5 ((𝑥 ∈ V ∧ 𝑃 ∈ ℝ) → (𝑥 ∈ [𝑃](𝐷 “ ℝ) ↔ 𝑃(𝐷 “ ℝ)𝑥))
118, 9, 10sylancr 587 . . . 4 ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ [𝑃](𝐷 “ ℝ) ↔ 𝑃(𝐷 “ ℝ)𝑥))
124xmeterval 23585 . . . . . 6 (𝐷 ∈ (∞Met‘ℝ*) → (𝑃(𝐷 “ ℝ)𝑥 ↔ (𝑃 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)))
133, 12ax-mp 5 . . . . 5 (𝑃(𝐷 “ ℝ)𝑥 ↔ (𝑃 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ))
14 simpr 485 . . . . . . . 8 ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 = 𝑥) → 𝑃 = 𝑥)
15 simplll 772 . . . . . . . 8 ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 = 𝑥) → 𝑃 ∈ ℝ)
1614, 15eqeltrrd 2840 . . . . . . 7 ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 = 𝑥) → 𝑥 ∈ ℝ)
17 simplr3 1216 . . . . . . . . 9 ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃𝑥) → (𝑃𝐷𝑥) ∈ ℝ)
18 simplr1 1214 . . . . . . . . . 10 ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃𝑥) → 𝑃 ∈ ℝ*)
19 simplr2 1215 . . . . . . . . . 10 ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃𝑥) → 𝑥 ∈ ℝ*)
20 simpr 485 . . . . . . . . . 10 ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃𝑥) → 𝑃𝑥)
212xrsdsreclb 20645 . . . . . . . . . 10 ((𝑃 ∈ ℝ*𝑥 ∈ ℝ*𝑃𝑥) → ((𝑃𝐷𝑥) ∈ ℝ ↔ (𝑃 ∈ ℝ ∧ 𝑥 ∈ ℝ)))
2218, 19, 20, 21syl3anc 1370 . . . . . . . . 9 ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃𝑥) → ((𝑃𝐷𝑥) ∈ ℝ ↔ (𝑃 ∈ ℝ ∧ 𝑥 ∈ ℝ)))
2317, 22mpbid 231 . . . . . . . 8 ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃𝑥) → (𝑃 ∈ ℝ ∧ 𝑥 ∈ ℝ))
2423simprd 496 . . . . . . 7 ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃𝑥) → 𝑥 ∈ ℝ)
2516, 24pm2.61dane 3032 . . . . . 6 (((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) → 𝑥 ∈ ℝ)
2625ex 413 . . . . 5 ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → ((𝑃 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ) → 𝑥 ∈ ℝ))
2713, 26syl5bi 241 . . . 4 ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → (𝑃(𝐷 “ ℝ)𝑥𝑥 ∈ ℝ))
2811, 27sylbid 239 . . 3 ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ [𝑃](𝐷 “ ℝ) → 𝑥 ∈ ℝ))
2928ssrdv 3927 . 2 ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → [𝑃](𝐷 “ ℝ) ⊆ ℝ)
307, 29sstrd 3931 1 ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  Vcvv 3432  wss 3887   class class class wbr 5074  ccnv 5588  cima 5592  cfv 6433  (class class class)co 7275  [cec 8496  cr 10870  *cxr 11008  distcds 16971  *𝑠cxrs 17211  ∞Metcxmet 20582  ballcbl 20584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-ec 8500  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-icc 13086  df-fz 13240  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-mulr 16976  df-tset 16981  df-ple 16982  df-ds 16984  df-xrs 17213  df-psmet 20589  df-xmet 20590  df-bl 20592
This theorem is referenced by:  xrsmopn  23975
  Copyright terms: Public domain W3C validator