![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrsblre | Structured version Visualization version GIF version |
Description: Any ball of the metric of the extended reals centered on an element of ℝ is entirely contained in ℝ. (Contributed by Mario Carneiro, 4-Sep-2015.) |
Ref | Expression |
---|---|
xrsxmet.1 | ⊢ 𝐷 = (dist‘ℝ*𝑠) |
Ref | Expression |
---|---|
xrsblre | ⊢ ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexr 11310 | . . 3 ⊢ (𝑃 ∈ ℝ → 𝑃 ∈ ℝ*) | |
2 | xrsxmet.1 | . . . . 5 ⊢ 𝐷 = (dist‘ℝ*𝑠) | |
3 | 2 | xrsxmet 24816 | . . . 4 ⊢ 𝐷 ∈ (∞Met‘ℝ*) |
4 | eqid 2726 | . . . . 5 ⊢ (◡𝐷 “ ℝ) = (◡𝐷 “ ℝ) | |
5 | 4 | blssec 24432 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘ℝ*) ∧ 𝑃 ∈ ℝ* ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ [𝑃](◡𝐷 “ ℝ)) |
6 | 3, 5 | mp3an1 1445 | . . 3 ⊢ ((𝑃 ∈ ℝ* ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ [𝑃](◡𝐷 “ ℝ)) |
7 | 1, 6 | sylan 578 | . 2 ⊢ ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ [𝑃](◡𝐷 “ ℝ)) |
8 | vex 3466 | . . . . 5 ⊢ 𝑥 ∈ V | |
9 | simpl 481 | . . . . 5 ⊢ ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → 𝑃 ∈ ℝ) | |
10 | elecg 8778 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ 𝑃 ∈ ℝ) → (𝑥 ∈ [𝑃](◡𝐷 “ ℝ) ↔ 𝑃(◡𝐷 “ ℝ)𝑥)) | |
11 | 8, 9, 10 | sylancr 585 | . . . 4 ⊢ ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ [𝑃](◡𝐷 “ ℝ) ↔ 𝑃(◡𝐷 “ ℝ)𝑥)) |
12 | 4 | xmeterval 24429 | . . . . . 6 ⊢ (𝐷 ∈ (∞Met‘ℝ*) → (𝑃(◡𝐷 “ ℝ)𝑥 ↔ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ))) |
13 | 3, 12 | ax-mp 5 | . . . . 5 ⊢ (𝑃(◡𝐷 “ ℝ)𝑥 ↔ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) |
14 | simpr 483 | . . . . . . . 8 ⊢ ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 = 𝑥) → 𝑃 = 𝑥) | |
15 | simplll 773 | . . . . . . . 8 ⊢ ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 = 𝑥) → 𝑃 ∈ ℝ) | |
16 | 14, 15 | eqeltrrd 2827 | . . . . . . 7 ⊢ ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 = 𝑥) → 𝑥 ∈ ℝ) |
17 | simplr3 1214 | . . . . . . . . 9 ⊢ ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 ≠ 𝑥) → (𝑃𝐷𝑥) ∈ ℝ) | |
18 | simplr1 1212 | . . . . . . . . . 10 ⊢ ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 ≠ 𝑥) → 𝑃 ∈ ℝ*) | |
19 | simplr2 1213 | . . . . . . . . . 10 ⊢ ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 ≠ 𝑥) → 𝑥 ∈ ℝ*) | |
20 | simpr 483 | . . . . . . . . . 10 ⊢ ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 ≠ 𝑥) → 𝑃 ≠ 𝑥) | |
21 | 2 | xrsdsreclb 21410 | . . . . . . . . . 10 ⊢ ((𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ 𝑃 ≠ 𝑥) → ((𝑃𝐷𝑥) ∈ ℝ ↔ (𝑃 ∈ ℝ ∧ 𝑥 ∈ ℝ))) |
22 | 18, 19, 20, 21 | syl3anc 1368 | . . . . . . . . 9 ⊢ ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 ≠ 𝑥) → ((𝑃𝐷𝑥) ∈ ℝ ↔ (𝑃 ∈ ℝ ∧ 𝑥 ∈ ℝ))) |
23 | 17, 22 | mpbid 231 | . . . . . . . 8 ⊢ ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 ≠ 𝑥) → (𝑃 ∈ ℝ ∧ 𝑥 ∈ ℝ)) |
24 | 23 | simprd 494 | . . . . . . 7 ⊢ ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 ≠ 𝑥) → 𝑥 ∈ ℝ) |
25 | 16, 24 | pm2.61dane 3019 | . . . . . 6 ⊢ (((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) → 𝑥 ∈ ℝ) |
26 | 25 | ex 411 | . . . . 5 ⊢ ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → ((𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ) → 𝑥 ∈ ℝ)) |
27 | 13, 26 | biimtrid 241 | . . . 4 ⊢ ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → (𝑃(◡𝐷 “ ℝ)𝑥 → 𝑥 ∈ ℝ)) |
28 | 11, 27 | sylbid 239 | . . 3 ⊢ ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ [𝑃](◡𝐷 “ ℝ) → 𝑥 ∈ ℝ)) |
29 | 28 | ssrdv 3985 | . 2 ⊢ ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → [𝑃](◡𝐷 “ ℝ) ⊆ ℝ) |
30 | 7, 29 | sstrd 3990 | 1 ⊢ ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 Vcvv 3462 ⊆ wss 3947 class class class wbr 5153 ◡ccnv 5681 “ cima 5685 ‘cfv 6554 (class class class)co 7424 [cec 8732 ℝcr 11157 ℝ*cxr 11297 distcds 17275 ℝ*𝑠cxrs 17515 ∞Metcxmet 21328 ballcbl 21330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 ax-pre-sup 11236 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-tp 4638 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-er 8734 df-ec 8736 df-map 8857 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-sup 9485 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-div 11922 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12611 df-dec 12730 df-uz 12875 df-rp 13029 df-xneg 13146 df-xadd 13147 df-xmul 13148 df-icc 13385 df-fz 13539 df-seq 14022 df-exp 14082 df-cj 15104 df-re 15105 df-im 15106 df-sqrt 15240 df-abs 15241 df-struct 17149 df-slot 17184 df-ndx 17196 df-base 17214 df-plusg 17279 df-mulr 17280 df-tset 17285 df-ple 17286 df-ds 17288 df-xrs 17517 df-psmet 21335 df-xmet 21336 df-bl 21338 |
This theorem is referenced by: xrsmopn 24819 |
Copyright terms: Public domain | W3C validator |