Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xrsblre | Structured version Visualization version GIF version |
Description: Any ball of the metric of the extended reals centered on an element of ℝ is entirely contained in ℝ. (Contributed by Mario Carneiro, 4-Sep-2015.) |
Ref | Expression |
---|---|
xrsxmet.1 | ⊢ 𝐷 = (dist‘ℝ*𝑠) |
Ref | Expression |
---|---|
xrsblre | ⊢ ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexr 10879 | . . 3 ⊢ (𝑃 ∈ ℝ → 𝑃 ∈ ℝ*) | |
2 | xrsxmet.1 | . . . . 5 ⊢ 𝐷 = (dist‘ℝ*𝑠) | |
3 | 2 | xrsxmet 23706 | . . . 4 ⊢ 𝐷 ∈ (∞Met‘ℝ*) |
4 | eqid 2737 | . . . . 5 ⊢ (◡𝐷 “ ℝ) = (◡𝐷 “ ℝ) | |
5 | 4 | blssec 23333 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘ℝ*) ∧ 𝑃 ∈ ℝ* ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ [𝑃](◡𝐷 “ ℝ)) |
6 | 3, 5 | mp3an1 1450 | . . 3 ⊢ ((𝑃 ∈ ℝ* ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ [𝑃](◡𝐷 “ ℝ)) |
7 | 1, 6 | sylan 583 | . 2 ⊢ ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ [𝑃](◡𝐷 “ ℝ)) |
8 | vex 3412 | . . . . 5 ⊢ 𝑥 ∈ V | |
9 | simpl 486 | . . . . 5 ⊢ ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → 𝑃 ∈ ℝ) | |
10 | elecg 8434 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ 𝑃 ∈ ℝ) → (𝑥 ∈ [𝑃](◡𝐷 “ ℝ) ↔ 𝑃(◡𝐷 “ ℝ)𝑥)) | |
11 | 8, 9, 10 | sylancr 590 | . . . 4 ⊢ ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ [𝑃](◡𝐷 “ ℝ) ↔ 𝑃(◡𝐷 “ ℝ)𝑥)) |
12 | 4 | xmeterval 23330 | . . . . . 6 ⊢ (𝐷 ∈ (∞Met‘ℝ*) → (𝑃(◡𝐷 “ ℝ)𝑥 ↔ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ))) |
13 | 3, 12 | ax-mp 5 | . . . . 5 ⊢ (𝑃(◡𝐷 “ ℝ)𝑥 ↔ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) |
14 | simpr 488 | . . . . . . . 8 ⊢ ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 = 𝑥) → 𝑃 = 𝑥) | |
15 | simplll 775 | . . . . . . . 8 ⊢ ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 = 𝑥) → 𝑃 ∈ ℝ) | |
16 | 14, 15 | eqeltrrd 2839 | . . . . . . 7 ⊢ ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 = 𝑥) → 𝑥 ∈ ℝ) |
17 | simplr3 1219 | . . . . . . . . 9 ⊢ ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 ≠ 𝑥) → (𝑃𝐷𝑥) ∈ ℝ) | |
18 | simplr1 1217 | . . . . . . . . . 10 ⊢ ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 ≠ 𝑥) → 𝑃 ∈ ℝ*) | |
19 | simplr2 1218 | . . . . . . . . . 10 ⊢ ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 ≠ 𝑥) → 𝑥 ∈ ℝ*) | |
20 | simpr 488 | . . . . . . . . . 10 ⊢ ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 ≠ 𝑥) → 𝑃 ≠ 𝑥) | |
21 | 2 | xrsdsreclb 20410 | . . . . . . . . . 10 ⊢ ((𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ 𝑃 ≠ 𝑥) → ((𝑃𝐷𝑥) ∈ ℝ ↔ (𝑃 ∈ ℝ ∧ 𝑥 ∈ ℝ))) |
22 | 18, 19, 20, 21 | syl3anc 1373 | . . . . . . . . 9 ⊢ ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 ≠ 𝑥) → ((𝑃𝐷𝑥) ∈ ℝ ↔ (𝑃 ∈ ℝ ∧ 𝑥 ∈ ℝ))) |
23 | 17, 22 | mpbid 235 | . . . . . . . 8 ⊢ ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 ≠ 𝑥) → (𝑃 ∈ ℝ ∧ 𝑥 ∈ ℝ)) |
24 | 23 | simprd 499 | . . . . . . 7 ⊢ ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 ≠ 𝑥) → 𝑥 ∈ ℝ) |
25 | 16, 24 | pm2.61dane 3029 | . . . . . 6 ⊢ (((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) → 𝑥 ∈ ℝ) |
26 | 25 | ex 416 | . . . . 5 ⊢ ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → ((𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ) → 𝑥 ∈ ℝ)) |
27 | 13, 26 | syl5bi 245 | . . . 4 ⊢ ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → (𝑃(◡𝐷 “ ℝ)𝑥 → 𝑥 ∈ ℝ)) |
28 | 11, 27 | sylbid 243 | . . 3 ⊢ ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ [𝑃](◡𝐷 “ ℝ) → 𝑥 ∈ ℝ)) |
29 | 28 | ssrdv 3907 | . 2 ⊢ ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → [𝑃](◡𝐷 “ ℝ) ⊆ ℝ) |
30 | 7, 29 | sstrd 3911 | 1 ⊢ ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 Vcvv 3408 ⊆ wss 3866 class class class wbr 5053 ◡ccnv 5550 “ cima 5554 ‘cfv 6380 (class class class)co 7213 [cec 8389 ℝcr 10728 ℝ*cxr 10866 distcds 16811 ℝ*𝑠cxrs 17005 ∞Metcxmet 20348 ballcbl 20350 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-ec 8393 df-map 8510 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-sup 9058 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-7 11898 df-8 11899 df-9 11900 df-n0 12091 df-z 12177 df-dec 12294 df-uz 12439 df-rp 12587 df-xneg 12704 df-xadd 12705 df-xmul 12706 df-icc 12942 df-fz 13096 df-seq 13575 df-exp 13636 df-cj 14662 df-re 14663 df-im 14664 df-sqrt 14798 df-abs 14799 df-struct 16700 df-slot 16735 df-ndx 16745 df-base 16761 df-plusg 16815 df-mulr 16816 df-tset 16821 df-ple 16822 df-ds 16824 df-xrs 17007 df-psmet 20355 df-xmet 20356 df-bl 20358 |
This theorem is referenced by: xrsmopn 23709 |
Copyright terms: Public domain | W3C validator |