![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xmetec | Structured version Visualization version GIF version |
Description: The equivalence classes under the finite separation equivalence relation are infinity balls. Thus, by erdisj 8735, infinity balls are either identical or disjoint, quite unlike the usual situation with Euclidean balls which admit many kinds of overlap. (Contributed by Mario Carneiro, 24-Aug-2015.) |
Ref | Expression |
---|---|
xmeter.1 | β’ βΌ = (β‘π· β β) |
Ref | Expression |
---|---|
xmetec | β’ ((π· β (βMetβπ) β§ π β π) β [π] βΌ = (π(ballβπ·)+β)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xmeter.1 | . . . . 5 β’ βΌ = (β‘π· β β) | |
2 | 1 | xmeterval 23862 | . . . 4 β’ (π· β (βMetβπ) β (π βΌ π₯ β (π β π β§ π₯ β π β§ (ππ·π₯) β β))) |
3 | 3anass 1095 | . . . . 5 β’ ((π β π β§ π₯ β π β§ (ππ·π₯) β β) β (π β π β§ (π₯ β π β§ (ππ·π₯) β β))) | |
4 | 3 | baib 536 | . . . 4 β’ (π β π β ((π β π β§ π₯ β π β§ (ππ·π₯) β β) β (π₯ β π β§ (ππ·π₯) β β))) |
5 | 2, 4 | sylan9bb 510 | . . 3 β’ ((π· β (βMetβπ) β§ π β π) β (π βΌ π₯ β (π₯ β π β§ (ππ·π₯) β β))) |
6 | vex 3474 | . . . . 5 β’ π₯ β V | |
7 | 6 | a1i 11 | . . . 4 β’ (π· β (βMetβπ) β π₯ β V) |
8 | elecg 8726 | . . . 4 β’ ((π₯ β V β§ π β π) β (π₯ β [π] βΌ β π βΌ π₯)) | |
9 | 7, 8 | sylan 580 | . . 3 β’ ((π· β (βMetβπ) β§ π β π) β (π₯ β [π] βΌ β π βΌ π₯)) |
10 | xblpnf 23826 | . . 3 β’ ((π· β (βMetβπ) β§ π β π) β (π₯ β (π(ballβπ·)+β) β (π₯ β π β§ (ππ·π₯) β β))) | |
11 | 5, 9, 10 | 3bitr4d 310 | . 2 β’ ((π· β (βMetβπ) β§ π β π) β (π₯ β [π] βΌ β π₯ β (π(ballβπ·)+β))) |
12 | 11 | eqrdv 2729 | 1 β’ ((π· β (βMetβπ) β§ π β π) β [π] βΌ = (π(ballβπ·)+β)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 Vcvv 3470 class class class wbr 5138 β‘ccnv 5665 β cima 5669 βcfv 6529 (class class class)co 7390 [cec 8681 βcr 11088 +βcpnf 11224 βMetcxmet 20858 ballcbl 20860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7705 ax-cnex 11145 ax-resscn 11146 ax-1cn 11147 ax-icn 11148 ax-addcl 11149 ax-addrcl 11150 ax-mulcl 11151 ax-mulrcl 11152 ax-mulcom 11153 ax-addass 11154 ax-mulass 11155 ax-distr 11156 ax-i2m1 11157 ax-1ne0 11158 ax-1rid 11159 ax-rnegex 11160 ax-rrecex 11161 ax-cnre 11162 ax-pre-lttri 11163 ax-pre-lttrn 11164 ax-pre-ltadd 11165 ax-pre-mulgt0 11166 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3430 df-v 3472 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4520 df-pw 4595 df-sn 4620 df-pr 4622 df-op 4626 df-uni 4899 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-po 5578 df-so 5579 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6481 df-fun 6531 df-fn 6532 df-f 6533 df-f1 6534 df-fo 6535 df-f1o 6536 df-fv 6537 df-riota 7346 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7954 df-2nd 7955 df-er 8683 df-ec 8685 df-map 8802 df-en 8920 df-dom 8921 df-sdom 8922 df-pnf 11229 df-mnf 11230 df-xr 11231 df-ltxr 11232 df-le 11233 df-sub 11425 df-neg 11426 df-div 11851 df-2 12254 df-rp 12954 df-xneg 13071 df-xadd 13072 df-xmul 13073 df-psmet 20865 df-xmet 20866 df-bl 20868 |
This theorem is referenced by: blssec 23865 blpnfctr 23866 |
Copyright terms: Public domain | W3C validator |