MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmetec Structured version   Visualization version   GIF version

Theorem xmetec 23568
Description: The equivalence classes under the finite separation equivalence relation are infinity balls. Thus, by erdisj 8524, infinity balls are either identical or disjoint, quite unlike the usual situation with Euclidean balls which admit many kinds of overlap. (Contributed by Mario Carneiro, 24-Aug-2015.)
Hypothesis
Ref Expression
xmeter.1 = (𝐷 “ ℝ)
Assertion
Ref Expression
xmetec ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → [𝑃] = (𝑃(ball‘𝐷)+∞))

Proof of Theorem xmetec
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 xmeter.1 . . . . 5 = (𝐷 “ ℝ)
21xmeterval 23566 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝑃 𝑥 ↔ (𝑃𝑋𝑥𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ)))
3 3anass 1093 . . . . 5 ((𝑃𝑋𝑥𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ) ↔ (𝑃𝑋 ∧ (𝑥𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ)))
43baib 535 . . . 4 (𝑃𝑋 → ((𝑃𝑋𝑥𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ)))
52, 4sylan9bb 509 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (𝑃 𝑥 ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ)))
6 vex 3434 . . . . 5 𝑥 ∈ V
76a1i 11 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝑥 ∈ V)
8 elecg 8515 . . . 4 ((𝑥 ∈ V ∧ 𝑃𝑋) → (𝑥 ∈ [𝑃] 𝑃 𝑥))
97, 8sylan 579 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (𝑥 ∈ [𝑃] 𝑃 𝑥))
10 xblpnf 23530 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (𝑥 ∈ (𝑃(ball‘𝐷)+∞) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ)))
115, 9, 103bitr4d 310 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (𝑥 ∈ [𝑃] 𝑥 ∈ (𝑃(ball‘𝐷)+∞)))
1211eqrdv 2737 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → [𝑃] = (𝑃(ball‘𝐷)+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1541  wcel 2109  Vcvv 3430   class class class wbr 5078  ccnv 5587  cima 5591  cfv 6430  (class class class)co 7268  [cec 8470  cr 10854  +∞cpnf 10990  ∞Metcxmet 20563  ballcbl 20565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-po 5502  df-so 5503  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-1st 7817  df-2nd 7818  df-er 8472  df-ec 8474  df-map 8591  df-en 8708  df-dom 8709  df-sdom 8710  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-2 12019  df-rp 12713  df-xneg 12830  df-xadd 12831  df-xmul 12832  df-psmet 20570  df-xmet 20571  df-bl 20573
This theorem is referenced by:  blssec  23569  blpnfctr  23570
  Copyright terms: Public domain W3C validator