MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmetec Structured version   Visualization version   GIF version

Theorem xmetec 23921
Description: The equivalence classes under the finite separation equivalence relation are infinity balls. Thus, by erdisj 8750, infinity balls are either identical or disjoint, quite unlike the usual situation with Euclidean balls which admit many kinds of overlap. (Contributed by Mario Carneiro, 24-Aug-2015.)
Hypothesis
Ref Expression
xmeter.1 = (𝐷 “ ℝ)
Assertion
Ref Expression
xmetec ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → [𝑃] = (𝑃(ball‘𝐷)+∞))

Proof of Theorem xmetec
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 xmeter.1 . . . . 5 = (𝐷 “ ℝ)
21xmeterval 23919 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝑃 𝑥 ↔ (𝑃𝑋𝑥𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ)))
3 3anass 1096 . . . . 5 ((𝑃𝑋𝑥𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ) ↔ (𝑃𝑋 ∧ (𝑥𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ)))
43baib 537 . . . 4 (𝑃𝑋 → ((𝑃𝑋𝑥𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ)))
52, 4sylan9bb 511 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (𝑃 𝑥 ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ)))
6 vex 3479 . . . . 5 𝑥 ∈ V
76a1i 11 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝑥 ∈ V)
8 elecg 8741 . . . 4 ((𝑥 ∈ V ∧ 𝑃𝑋) → (𝑥 ∈ [𝑃] 𝑃 𝑥))
97, 8sylan 581 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (𝑥 ∈ [𝑃] 𝑃 𝑥))
10 xblpnf 23883 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (𝑥 ∈ (𝑃(ball‘𝐷)+∞) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ)))
115, 9, 103bitr4d 311 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (𝑥 ∈ [𝑃] 𝑥 ∈ (𝑃(ball‘𝐷)+∞)))
1211eqrdv 2731 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → [𝑃] = (𝑃(ball‘𝐷)+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  Vcvv 3475   class class class wbr 5146  ccnv 5673  cima 5677  cfv 6539  (class class class)co 7403  [cec 8696  cr 11104  +∞cpnf 11240  ∞Metcxmet 20913  ballcbl 20915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5297  ax-nul 5304  ax-pow 5361  ax-pr 5425  ax-un 7719  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4321  df-if 4527  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4907  df-iun 4997  df-br 5147  df-opab 5209  df-mpt 5230  df-id 5572  df-po 5586  df-so 5587  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-iota 6491  df-fun 6541  df-fn 6542  df-f 6543  df-f1 6544  df-fo 6545  df-f1o 6546  df-fv 6547  df-riota 7359  df-ov 7406  df-oprab 7407  df-mpo 7408  df-1st 7969  df-2nd 7970  df-er 8698  df-ec 8700  df-map 8817  df-en 8935  df-dom 8936  df-sdom 8937  df-pnf 11245  df-mnf 11246  df-xr 11247  df-ltxr 11248  df-le 11249  df-sub 11441  df-neg 11442  df-div 11867  df-2 12270  df-rp 12970  df-xneg 13087  df-xadd 13088  df-xmul 13089  df-psmet 20920  df-xmet 20921  df-bl 20923
This theorem is referenced by:  blssec  23922  blpnfctr  23923
  Copyright terms: Public domain W3C validator