![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rngqipring1 | Structured version Visualization version GIF version |
Description: The ring unity of the product of the quotient with a two-sided ideal and the two-sided ideal, which both are rings. (Contributed by AV, 16-Mar-2025.) |
Ref | Expression |
---|---|
rngqiprngfu.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
rngqiprngfu.i | ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) |
rngqiprngfu.j | ⊢ 𝐽 = (𝑅 ↾s 𝐼) |
rngqiprngfu.u | ⊢ (𝜑 → 𝐽 ∈ Ring) |
rngqiprngfu.b | ⊢ 𝐵 = (Base‘𝑅) |
rngqiprngfu.t | ⊢ · = (.r‘𝑅) |
rngqiprngfu.1 | ⊢ 1 = (1r‘𝐽) |
rngqiprngfu.g | ⊢ ∼ = (𝑅 ~QG 𝐼) |
rngqiprngfu.q | ⊢ 𝑄 = (𝑅 /s ∼ ) |
rngqiprngfu.v | ⊢ (𝜑 → 𝑄 ∈ Ring) |
rngqiprngfu.e | ⊢ (𝜑 → 𝐸 ∈ (1r‘𝑄)) |
rngqiprngfu.m | ⊢ − = (-g‘𝑅) |
rngqiprngfu.a | ⊢ + = (+g‘𝑅) |
rngqiprngfu.n | ⊢ 𝑈 = ((𝐸 − ( 1 · 𝐸)) + 1 ) |
rngqipring1.p | ⊢ 𝑃 = (𝑄 ×s 𝐽) |
Ref | Expression |
---|---|
rngqipring1 | ⊢ (𝜑 → (1r‘𝑃) = 〈[𝐸] ∼ , 1 〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngqipring1.p | . . 3 ⊢ 𝑃 = (𝑄 ×s 𝐽) | |
2 | rngqiprngfu.v | . . 3 ⊢ (𝜑 → 𝑄 ∈ Ring) | |
3 | rngqiprngfu.u | . . 3 ⊢ (𝜑 → 𝐽 ∈ Ring) | |
4 | 1, 2, 3 | xpsring1d 20356 | . 2 ⊢ (𝜑 → (1r‘𝑃) = 〈(1r‘𝑄), (1r‘𝐽)〉) |
5 | rngqiprngfu.e | . . . . . . . . 9 ⊢ (𝜑 → 𝐸 ∈ (1r‘𝑄)) | |
6 | 5 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐸 ∈ (1r‘𝑄)) |
7 | eleq2 2833 | . . . . . . . . . . 11 ⊢ ((1r‘𝑄) = [𝑥] ∼ → (𝐸 ∈ (1r‘𝑄) ↔ 𝐸 ∈ [𝑥] ∼ )) | |
8 | 7 | adantl 481 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (1r‘𝑄) = [𝑥] ∼ ) → (𝐸 ∈ (1r‘𝑄) ↔ 𝐸 ∈ [𝑥] ∼ )) |
9 | elecg 8807 | . . . . . . . . . . . . 13 ⊢ ((𝐸 ∈ (1r‘𝑄) ∧ 𝑥 ∈ 𝐵) → (𝐸 ∈ [𝑥] ∼ ↔ 𝑥 ∼ 𝐸)) | |
10 | 5, 9 | sylan 579 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐸 ∈ [𝑥] ∼ ↔ 𝑥 ∼ 𝐸)) |
11 | rngqiprngfu.r | . . . . . . . . . . . . . . . . . . . 20 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
12 | rngqiprngfu.i | . . . . . . . . . . . . . . . . . . . 20 ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) | |
13 | rngqiprngfu.j | . . . . . . . . . . . . . . . . . . . . 21 ⊢ 𝐽 = (𝑅 ↾s 𝐼) | |
14 | ringrng 20308 | . . . . . . . . . . . . . . . . . . . . . 22 ⊢ (𝐽 ∈ Ring → 𝐽 ∈ Rng) | |
15 | 3, 14 | syl 17 | . . . . . . . . . . . . . . . . . . . . 21 ⊢ (𝜑 → 𝐽 ∈ Rng) |
16 | 13, 15 | eqeltrrid 2849 | . . . . . . . . . . . . . . . . . . . 20 ⊢ (𝜑 → (𝑅 ↾s 𝐼) ∈ Rng) |
17 | 11, 12, 16 | rng2idlnsg 21299 | . . . . . . . . . . . . . . . . . . 19 ⊢ (𝜑 → 𝐼 ∈ (NrmSGrp‘𝑅)) |
18 | nsgsubg 19198 | . . . . . . . . . . . . . . . . . . 19 ⊢ (𝐼 ∈ (NrmSGrp‘𝑅) → 𝐼 ∈ (SubGrp‘𝑅)) | |
19 | 17, 18 | syl 17 | . . . . . . . . . . . . . . . . . 18 ⊢ (𝜑 → 𝐼 ∈ (SubGrp‘𝑅)) |
20 | 19 | adantr 480 | . . . . . . . . . . . . . . . . 17 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐼 ∈ (SubGrp‘𝑅)) |
21 | rngqiprngfu.b | . . . . . . . . . . . . . . . . . 18 ⊢ 𝐵 = (Base‘𝑅) | |
22 | rngqiprngfu.g | . . . . . . . . . . . . . . . . . 18 ⊢ ∼ = (𝑅 ~QG 𝐼) | |
23 | 21, 22 | eqger 19218 | . . . . . . . . . . . . . . . . 17 ⊢ (𝐼 ∈ (SubGrp‘𝑅) → ∼ Er 𝐵) |
24 | 20, 23 | syl 17 | . . . . . . . . . . . . . . . 16 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∼ Er 𝐵) |
25 | simpr 484 | . . . . . . . . . . . . . . . 16 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
26 | 24, 25 | erth 8814 | . . . . . . . . . . . . . . 15 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 ∼ 𝐸 ↔ [𝑥] ∼ = [𝐸] ∼ )) |
27 | 26 | biimpa 476 | . . . . . . . . . . . . . 14 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑥 ∼ 𝐸) → [𝑥] ∼ = [𝐸] ∼ ) |
28 | 27 | eqcomd 2746 | . . . . . . . . . . . . 13 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑥 ∼ 𝐸) → [𝐸] ∼ = [𝑥] ∼ ) |
29 | 28 | ex 412 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 ∼ 𝐸 → [𝐸] ∼ = [𝑥] ∼ )) |
30 | 10, 29 | sylbid 240 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐸 ∈ [𝑥] ∼ → [𝐸] ∼ = [𝑥] ∼ )) |
31 | 30 | adantr 480 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (1r‘𝑄) = [𝑥] ∼ ) → (𝐸 ∈ [𝑥] ∼ → [𝐸] ∼ = [𝑥] ∼ )) |
32 | 8, 31 | sylbid 240 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (1r‘𝑄) = [𝑥] ∼ ) → (𝐸 ∈ (1r‘𝑄) → [𝐸] ∼ = [𝑥] ∼ )) |
33 | 32 | ex 412 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((1r‘𝑄) = [𝑥] ∼ → (𝐸 ∈ (1r‘𝑄) → [𝐸] ∼ = [𝑥] ∼ ))) |
34 | 6, 33 | mpid 44 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((1r‘𝑄) = [𝑥] ∼ → [𝐸] ∼ = [𝑥] ∼ )) |
35 | 34 | imp 406 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (1r‘𝑄) = [𝑥] ∼ ) → [𝐸] ∼ = [𝑥] ∼ ) |
36 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (1r‘𝑄) = [𝑥] ∼ ) → (1r‘𝑄) = [𝑥] ∼ ) | |
37 | 35, 36 | eqtr4d 2783 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (1r‘𝑄) = [𝑥] ∼ ) → [𝐸] ∼ = (1r‘𝑄)) |
38 | rngqiprngfu.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
39 | rngqiprngfu.1 | . . . . . 6 ⊢ 1 = (1r‘𝐽) | |
40 | rngqiprngfu.q | . . . . . 6 ⊢ 𝑄 = (𝑅 /s ∼ ) | |
41 | 11, 12, 13, 3, 21, 38, 39, 22, 40, 2 | rngqiprngfulem1 21344 | . . . . 5 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 (1r‘𝑄) = [𝑥] ∼ ) |
42 | 37, 41 | r19.29a 3168 | . . . 4 ⊢ (𝜑 → [𝐸] ∼ = (1r‘𝑄)) |
43 | 42 | eqcomd 2746 | . . 3 ⊢ (𝜑 → (1r‘𝑄) = [𝐸] ∼ ) |
44 | 39 | eqcomi 2749 | . . . 4 ⊢ (1r‘𝐽) = 1 |
45 | 44 | a1i 11 | . . 3 ⊢ (𝜑 → (1r‘𝐽) = 1 ) |
46 | 43, 45 | opeq12d 4905 | . 2 ⊢ (𝜑 → 〈(1r‘𝑄), (1r‘𝐽)〉 = 〈[𝐸] ∼ , 1 〉) |
47 | 4, 46 | eqtrd 2780 | 1 ⊢ (𝜑 → (1r‘𝑃) = 〈[𝐸] ∼ , 1 〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 〈cop 4654 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 Er wer 8760 [cec 8761 Basecbs 17258 ↾s cress 17287 +gcplusg 17311 .rcmulr 17312 /s cqus 17565 ×s cxps 17566 -gcsg 18975 SubGrpcsubg 19160 NrmSGrpcnsg 19161 ~QG cqg 19162 Rngcrng 20179 1rcur 20208 Ringcrg 20260 2Idealc2idl 21282 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-ec 8765 df-qs 8769 df-map 8886 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-hom 17335 df-cco 17336 df-0g 17501 df-prds 17507 df-imas 17568 df-qus 17569 df-xps 17570 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-subg 19163 df-nsg 19164 df-eqg 19165 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-subrng 20572 df-lss 20953 df-sra 21195 df-rgmod 21196 df-lidl 21241 df-2idl 21283 |
This theorem is referenced by: rngqiprngu 21351 |
Copyright terms: Public domain | W3C validator |