| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngqipring1 | Structured version Visualization version GIF version | ||
| Description: The ring unity of the product of the quotient with a two-sided ideal and the two-sided ideal, which both are rings. (Contributed by AV, 16-Mar-2025.) |
| Ref | Expression |
|---|---|
| rngqiprngfu.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
| rngqiprngfu.i | ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) |
| rngqiprngfu.j | ⊢ 𝐽 = (𝑅 ↾s 𝐼) |
| rngqiprngfu.u | ⊢ (𝜑 → 𝐽 ∈ Ring) |
| rngqiprngfu.b | ⊢ 𝐵 = (Base‘𝑅) |
| rngqiprngfu.t | ⊢ · = (.r‘𝑅) |
| rngqiprngfu.1 | ⊢ 1 = (1r‘𝐽) |
| rngqiprngfu.g | ⊢ ∼ = (𝑅 ~QG 𝐼) |
| rngqiprngfu.q | ⊢ 𝑄 = (𝑅 /s ∼ ) |
| rngqiprngfu.v | ⊢ (𝜑 → 𝑄 ∈ Ring) |
| rngqiprngfu.e | ⊢ (𝜑 → 𝐸 ∈ (1r‘𝑄)) |
| rngqiprngfu.m | ⊢ − = (-g‘𝑅) |
| rngqiprngfu.a | ⊢ + = (+g‘𝑅) |
| rngqiprngfu.n | ⊢ 𝑈 = ((𝐸 − ( 1 · 𝐸)) + 1 ) |
| rngqipring1.p | ⊢ 𝑃 = (𝑄 ×s 𝐽) |
| Ref | Expression |
|---|---|
| rngqipring1 | ⊢ (𝜑 → (1r‘𝑃) = 〈[𝐸] ∼ , 1 〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngqipring1.p | . . 3 ⊢ 𝑃 = (𝑄 ×s 𝐽) | |
| 2 | rngqiprngfu.v | . . 3 ⊢ (𝜑 → 𝑄 ∈ Ring) | |
| 3 | rngqiprngfu.u | . . 3 ⊢ (𝜑 → 𝐽 ∈ Ring) | |
| 4 | 1, 2, 3 | xpsring1d 20218 | . 2 ⊢ (𝜑 → (1r‘𝑃) = 〈(1r‘𝑄), (1r‘𝐽)〉) |
| 5 | rngqiprngfu.e | . . . . . . . . 9 ⊢ (𝜑 → 𝐸 ∈ (1r‘𝑄)) | |
| 6 | 5 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐸 ∈ (1r‘𝑄)) |
| 7 | eleq2 2817 | . . . . . . . . . . 11 ⊢ ((1r‘𝑄) = [𝑥] ∼ → (𝐸 ∈ (1r‘𝑄) ↔ 𝐸 ∈ [𝑥] ∼ )) | |
| 8 | 7 | adantl 481 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (1r‘𝑄) = [𝑥] ∼ ) → (𝐸 ∈ (1r‘𝑄) ↔ 𝐸 ∈ [𝑥] ∼ )) |
| 9 | elecg 8692 | . . . . . . . . . . . . 13 ⊢ ((𝐸 ∈ (1r‘𝑄) ∧ 𝑥 ∈ 𝐵) → (𝐸 ∈ [𝑥] ∼ ↔ 𝑥 ∼ 𝐸)) | |
| 10 | 5, 9 | sylan 580 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐸 ∈ [𝑥] ∼ ↔ 𝑥 ∼ 𝐸)) |
| 11 | rngqiprngfu.r | . . . . . . . . . . . . . . . . . . . 20 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
| 12 | rngqiprngfu.i | . . . . . . . . . . . . . . . . . . . 20 ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) | |
| 13 | rngqiprngfu.j | . . . . . . . . . . . . . . . . . . . . 21 ⊢ 𝐽 = (𝑅 ↾s 𝐼) | |
| 14 | ringrng 20170 | . . . . . . . . . . . . . . . . . . . . . 22 ⊢ (𝐽 ∈ Ring → 𝐽 ∈ Rng) | |
| 15 | 3, 14 | syl 17 | . . . . . . . . . . . . . . . . . . . . 21 ⊢ (𝜑 → 𝐽 ∈ Rng) |
| 16 | 13, 15 | eqeltrrid 2833 | . . . . . . . . . . . . . . . . . . . 20 ⊢ (𝜑 → (𝑅 ↾s 𝐼) ∈ Rng) |
| 17 | 11, 12, 16 | rng2idlnsg 21152 | . . . . . . . . . . . . . . . . . . 19 ⊢ (𝜑 → 𝐼 ∈ (NrmSGrp‘𝑅)) |
| 18 | nsgsubg 19066 | . . . . . . . . . . . . . . . . . . 19 ⊢ (𝐼 ∈ (NrmSGrp‘𝑅) → 𝐼 ∈ (SubGrp‘𝑅)) | |
| 19 | 17, 18 | syl 17 | . . . . . . . . . . . . . . . . . 18 ⊢ (𝜑 → 𝐼 ∈ (SubGrp‘𝑅)) |
| 20 | 19 | adantr 480 | . . . . . . . . . . . . . . . . 17 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐼 ∈ (SubGrp‘𝑅)) |
| 21 | rngqiprngfu.b | . . . . . . . . . . . . . . . . . 18 ⊢ 𝐵 = (Base‘𝑅) | |
| 22 | rngqiprngfu.g | . . . . . . . . . . . . . . . . . 18 ⊢ ∼ = (𝑅 ~QG 𝐼) | |
| 23 | 21, 22 | eqger 19086 | . . . . . . . . . . . . . . . . 17 ⊢ (𝐼 ∈ (SubGrp‘𝑅) → ∼ Er 𝐵) |
| 24 | 20, 23 | syl 17 | . . . . . . . . . . . . . . . 16 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∼ Er 𝐵) |
| 25 | simpr 484 | . . . . . . . . . . . . . . . 16 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
| 26 | 24, 25 | erth 8702 | . . . . . . . . . . . . . . 15 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 ∼ 𝐸 ↔ [𝑥] ∼ = [𝐸] ∼ )) |
| 27 | 26 | biimpa 476 | . . . . . . . . . . . . . 14 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑥 ∼ 𝐸) → [𝑥] ∼ = [𝐸] ∼ ) |
| 28 | 27 | eqcomd 2735 | . . . . . . . . . . . . 13 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑥 ∼ 𝐸) → [𝐸] ∼ = [𝑥] ∼ ) |
| 29 | 28 | ex 412 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 ∼ 𝐸 → [𝐸] ∼ = [𝑥] ∼ )) |
| 30 | 10, 29 | sylbid 240 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐸 ∈ [𝑥] ∼ → [𝐸] ∼ = [𝑥] ∼ )) |
| 31 | 30 | adantr 480 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (1r‘𝑄) = [𝑥] ∼ ) → (𝐸 ∈ [𝑥] ∼ → [𝐸] ∼ = [𝑥] ∼ )) |
| 32 | 8, 31 | sylbid 240 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (1r‘𝑄) = [𝑥] ∼ ) → (𝐸 ∈ (1r‘𝑄) → [𝐸] ∼ = [𝑥] ∼ )) |
| 33 | 32 | ex 412 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((1r‘𝑄) = [𝑥] ∼ → (𝐸 ∈ (1r‘𝑄) → [𝐸] ∼ = [𝑥] ∼ ))) |
| 34 | 6, 33 | mpid 44 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((1r‘𝑄) = [𝑥] ∼ → [𝐸] ∼ = [𝑥] ∼ )) |
| 35 | 34 | imp 406 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (1r‘𝑄) = [𝑥] ∼ ) → [𝐸] ∼ = [𝑥] ∼ ) |
| 36 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (1r‘𝑄) = [𝑥] ∼ ) → (1r‘𝑄) = [𝑥] ∼ ) | |
| 37 | 35, 36 | eqtr4d 2767 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (1r‘𝑄) = [𝑥] ∼ ) → [𝐸] ∼ = (1r‘𝑄)) |
| 38 | rngqiprngfu.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
| 39 | rngqiprngfu.1 | . . . . . 6 ⊢ 1 = (1r‘𝐽) | |
| 40 | rngqiprngfu.q | . . . . . 6 ⊢ 𝑄 = (𝑅 /s ∼ ) | |
| 41 | 11, 12, 13, 3, 21, 38, 39, 22, 40, 2 | rngqiprngfulem1 21197 | . . . . 5 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 (1r‘𝑄) = [𝑥] ∼ ) |
| 42 | 37, 41 | r19.29a 3141 | . . . 4 ⊢ (𝜑 → [𝐸] ∼ = (1r‘𝑄)) |
| 43 | 42 | eqcomd 2735 | . . 3 ⊢ (𝜑 → (1r‘𝑄) = [𝐸] ∼ ) |
| 44 | 39 | eqcomi 2738 | . . . 4 ⊢ (1r‘𝐽) = 1 |
| 45 | 44 | a1i 11 | . . 3 ⊢ (𝜑 → (1r‘𝐽) = 1 ) |
| 46 | 43, 45 | opeq12d 4841 | . 2 ⊢ (𝜑 → 〈(1r‘𝑄), (1r‘𝐽)〉 = 〈[𝐸] ∼ , 1 〉) |
| 47 | 4, 46 | eqtrd 2764 | 1 ⊢ (𝜑 → (1r‘𝑃) = 〈[𝐸] ∼ , 1 〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4591 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 Er wer 8645 [cec 8646 Basecbs 17155 ↾s cress 17176 +gcplusg 17196 .rcmulr 17197 /s cqus 17444 ×s cxps 17445 -gcsg 18843 SubGrpcsubg 19028 NrmSGrpcnsg 19029 ~QG cqg 19030 Rngcrng 20037 1rcur 20066 Ringcrg 20118 2Idealc2idl 21135 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-ec 8650 df-qs 8654 df-map 8778 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-hom 17220 df-cco 17221 df-0g 17380 df-prds 17386 df-imas 17447 df-qus 17448 df-xps 17449 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 df-subg 19031 df-nsg 19032 df-eqg 19033 df-cmn 19688 df-abl 19689 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-subrng 20431 df-lss 20814 df-sra 21056 df-rgmod 21057 df-lidl 21094 df-2idl 21136 |
| This theorem is referenced by: rngqiprngu 21204 |
| Copyright terms: Public domain | W3C validator |