MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngqipring1 Structured version   Visualization version   GIF version

Theorem rngqipring1 21202
Description: The ring unity of the product of the quotient with a two-sided ideal and the two-sided ideal, which both are rings. (Contributed by AV, 16-Mar-2025.)
Hypotheses
Ref Expression
rngqiprngfu.r (𝜑𝑅 ∈ Rng)
rngqiprngfu.i (𝜑𝐼 ∈ (2Ideal‘𝑅))
rngqiprngfu.j 𝐽 = (𝑅s 𝐼)
rngqiprngfu.u (𝜑𝐽 ∈ Ring)
rngqiprngfu.b 𝐵 = (Base‘𝑅)
rngqiprngfu.t · = (.r𝑅)
rngqiprngfu.1 1 = (1r𝐽)
rngqiprngfu.g = (𝑅 ~QG 𝐼)
rngqiprngfu.q 𝑄 = (𝑅 /s )
rngqiprngfu.v (𝜑𝑄 ∈ Ring)
rngqiprngfu.e (𝜑𝐸 ∈ (1r𝑄))
rngqiprngfu.m = (-g𝑅)
rngqiprngfu.a + = (+g𝑅)
rngqiprngfu.n 𝑈 = ((𝐸 ( 1 · 𝐸)) + 1 )
rngqipring1.p 𝑃 = (𝑄 ×s 𝐽)
Assertion
Ref Expression
rngqipring1 (𝜑 → (1r𝑃) = ⟨[𝐸] , 1 ⟩)

Proof of Theorem rngqipring1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rngqipring1.p . . 3 𝑃 = (𝑄 ×s 𝐽)
2 rngqiprngfu.v . . 3 (𝜑𝑄 ∈ Ring)
3 rngqiprngfu.u . . 3 (𝜑𝐽 ∈ Ring)
41, 2, 3xpsring1d 20218 . 2 (𝜑 → (1r𝑃) = ⟨(1r𝑄), (1r𝐽)⟩)
5 rngqiprngfu.e . . . . . . . . 9 (𝜑𝐸 ∈ (1r𝑄))
65adantr 480 . . . . . . . 8 ((𝜑𝑥𝐵) → 𝐸 ∈ (1r𝑄))
7 eleq2 2817 . . . . . . . . . . 11 ((1r𝑄) = [𝑥] → (𝐸 ∈ (1r𝑄) ↔ 𝐸 ∈ [𝑥] ))
87adantl 481 . . . . . . . . . 10 (((𝜑𝑥𝐵) ∧ (1r𝑄) = [𝑥] ) → (𝐸 ∈ (1r𝑄) ↔ 𝐸 ∈ [𝑥] ))
9 elecg 8692 . . . . . . . . . . . . 13 ((𝐸 ∈ (1r𝑄) ∧ 𝑥𝐵) → (𝐸 ∈ [𝑥] 𝑥 𝐸))
105, 9sylan 580 . . . . . . . . . . . 12 ((𝜑𝑥𝐵) → (𝐸 ∈ [𝑥] 𝑥 𝐸))
11 rngqiprngfu.r . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑅 ∈ Rng)
12 rngqiprngfu.i . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐼 ∈ (2Ideal‘𝑅))
13 rngqiprngfu.j . . . . . . . . . . . . . . . . . . . . 21 𝐽 = (𝑅s 𝐼)
14 ringrng 20170 . . . . . . . . . . . . . . . . . . . . . 22 (𝐽 ∈ Ring → 𝐽 ∈ Rng)
153, 14syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐽 ∈ Rng)
1613, 15eqeltrrid 2833 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑅s 𝐼) ∈ Rng)
1711, 12, 16rng2idlnsg 21152 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐼 ∈ (NrmSGrp‘𝑅))
18 nsgsubg 19066 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ (NrmSGrp‘𝑅) → 𝐼 ∈ (SubGrp‘𝑅))
1917, 18syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝐼 ∈ (SubGrp‘𝑅))
2019adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐵) → 𝐼 ∈ (SubGrp‘𝑅))
21 rngqiprngfu.b . . . . . . . . . . . . . . . . . 18 𝐵 = (Base‘𝑅)
22 rngqiprngfu.g . . . . . . . . . . . . . . . . . 18 = (𝑅 ~QG 𝐼)
2321, 22eqger 19086 . . . . . . . . . . . . . . . . 17 (𝐼 ∈ (SubGrp‘𝑅) → Er 𝐵)
2420, 23syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐵) → Er 𝐵)
25 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐵) → 𝑥𝐵)
2624, 25erth 8702 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐵) → (𝑥 𝐸 ↔ [𝑥] = [𝐸] ))
2726biimpa 476 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐵) ∧ 𝑥 𝐸) → [𝑥] = [𝐸] )
2827eqcomd 2735 . . . . . . . . . . . . 13 (((𝜑𝑥𝐵) ∧ 𝑥 𝐸) → [𝐸] = [𝑥] )
2928ex 412 . . . . . . . . . . . 12 ((𝜑𝑥𝐵) → (𝑥 𝐸 → [𝐸] = [𝑥] ))
3010, 29sylbid 240 . . . . . . . . . . 11 ((𝜑𝑥𝐵) → (𝐸 ∈ [𝑥] → [𝐸] = [𝑥] ))
3130adantr 480 . . . . . . . . . 10 (((𝜑𝑥𝐵) ∧ (1r𝑄) = [𝑥] ) → (𝐸 ∈ [𝑥] → [𝐸] = [𝑥] ))
328, 31sylbid 240 . . . . . . . . 9 (((𝜑𝑥𝐵) ∧ (1r𝑄) = [𝑥] ) → (𝐸 ∈ (1r𝑄) → [𝐸] = [𝑥] ))
3332ex 412 . . . . . . . 8 ((𝜑𝑥𝐵) → ((1r𝑄) = [𝑥] → (𝐸 ∈ (1r𝑄) → [𝐸] = [𝑥] )))
346, 33mpid 44 . . . . . . 7 ((𝜑𝑥𝐵) → ((1r𝑄) = [𝑥] → [𝐸] = [𝑥] ))
3534imp 406 . . . . . 6 (((𝜑𝑥𝐵) ∧ (1r𝑄) = [𝑥] ) → [𝐸] = [𝑥] )
36 simpr 484 . . . . . 6 (((𝜑𝑥𝐵) ∧ (1r𝑄) = [𝑥] ) → (1r𝑄) = [𝑥] )
3735, 36eqtr4d 2767 . . . . 5 (((𝜑𝑥𝐵) ∧ (1r𝑄) = [𝑥] ) → [𝐸] = (1r𝑄))
38 rngqiprngfu.t . . . . . 6 · = (.r𝑅)
39 rngqiprngfu.1 . . . . . 6 1 = (1r𝐽)
40 rngqiprngfu.q . . . . . 6 𝑄 = (𝑅 /s )
4111, 12, 13, 3, 21, 38, 39, 22, 40, 2rngqiprngfulem1 21197 . . . . 5 (𝜑 → ∃𝑥𝐵 (1r𝑄) = [𝑥] )
4237, 41r19.29a 3141 . . . 4 (𝜑 → [𝐸] = (1r𝑄))
4342eqcomd 2735 . . 3 (𝜑 → (1r𝑄) = [𝐸] )
4439eqcomi 2738 . . . 4 (1r𝐽) = 1
4544a1i 11 . . 3 (𝜑 → (1r𝐽) = 1 )
4643, 45opeq12d 4841 . 2 (𝜑 → ⟨(1r𝑄), (1r𝐽)⟩ = ⟨[𝐸] , 1 ⟩)
474, 46eqtrd 2764 1 (𝜑 → (1r𝑃) = ⟨[𝐸] , 1 ⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cop 4591   class class class wbr 5102  cfv 6499  (class class class)co 7369   Er wer 8645  [cec 8646  Basecbs 17155  s cress 17176  +gcplusg 17196  .rcmulr 17197   /s cqus 17444   ×s cxps 17445  -gcsg 18843  SubGrpcsubg 19028  NrmSGrpcnsg 19029   ~QG cqg 19030  Rngcrng 20037  1rcur 20066  Ringcrg 20118  2Idealc2idl 21135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-ec 8650  df-qs 8654  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-hom 17220  df-cco 17221  df-0g 17380  df-prds 17386  df-imas 17447  df-qus 17448  df-xps 17449  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-minusg 18845  df-subg 19031  df-nsg 19032  df-eqg 19033  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-subrng 20431  df-lss 20814  df-sra 21056  df-rgmod 21057  df-lidl 21094  df-2idl 21136
This theorem is referenced by:  rngqiprngu  21204
  Copyright terms: Public domain W3C validator