MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngqipring1 Structured version   Visualization version   GIF version

Theorem rngqipring1 21349
Description: The ring unity of the product of the quotient with a two-sided ideal and the two-sided ideal, which both are rings. (Contributed by AV, 16-Mar-2025.)
Hypotheses
Ref Expression
rngqiprngfu.r (𝜑𝑅 ∈ Rng)
rngqiprngfu.i (𝜑𝐼 ∈ (2Ideal‘𝑅))
rngqiprngfu.j 𝐽 = (𝑅s 𝐼)
rngqiprngfu.u (𝜑𝐽 ∈ Ring)
rngqiprngfu.b 𝐵 = (Base‘𝑅)
rngqiprngfu.t · = (.r𝑅)
rngqiprngfu.1 1 = (1r𝐽)
rngqiprngfu.g = (𝑅 ~QG 𝐼)
rngqiprngfu.q 𝑄 = (𝑅 /s )
rngqiprngfu.v (𝜑𝑄 ∈ Ring)
rngqiprngfu.e (𝜑𝐸 ∈ (1r𝑄))
rngqiprngfu.m = (-g𝑅)
rngqiprngfu.a + = (+g𝑅)
rngqiprngfu.n 𝑈 = ((𝐸 ( 1 · 𝐸)) + 1 )
rngqipring1.p 𝑃 = (𝑄 ×s 𝐽)
Assertion
Ref Expression
rngqipring1 (𝜑 → (1r𝑃) = ⟨[𝐸] , 1 ⟩)

Proof of Theorem rngqipring1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rngqipring1.p . . 3 𝑃 = (𝑄 ×s 𝐽)
2 rngqiprngfu.v . . 3 (𝜑𝑄 ∈ Ring)
3 rngqiprngfu.u . . 3 (𝜑𝐽 ∈ Ring)
41, 2, 3xpsring1d 20356 . 2 (𝜑 → (1r𝑃) = ⟨(1r𝑄), (1r𝐽)⟩)
5 rngqiprngfu.e . . . . . . . . 9 (𝜑𝐸 ∈ (1r𝑄))
65adantr 480 . . . . . . . 8 ((𝜑𝑥𝐵) → 𝐸 ∈ (1r𝑄))
7 eleq2 2833 . . . . . . . . . . 11 ((1r𝑄) = [𝑥] → (𝐸 ∈ (1r𝑄) ↔ 𝐸 ∈ [𝑥] ))
87adantl 481 . . . . . . . . . 10 (((𝜑𝑥𝐵) ∧ (1r𝑄) = [𝑥] ) → (𝐸 ∈ (1r𝑄) ↔ 𝐸 ∈ [𝑥] ))
9 elecg 8807 . . . . . . . . . . . . 13 ((𝐸 ∈ (1r𝑄) ∧ 𝑥𝐵) → (𝐸 ∈ [𝑥] 𝑥 𝐸))
105, 9sylan 579 . . . . . . . . . . . 12 ((𝜑𝑥𝐵) → (𝐸 ∈ [𝑥] 𝑥 𝐸))
11 rngqiprngfu.r . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑅 ∈ Rng)
12 rngqiprngfu.i . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐼 ∈ (2Ideal‘𝑅))
13 rngqiprngfu.j . . . . . . . . . . . . . . . . . . . . 21 𝐽 = (𝑅s 𝐼)
14 ringrng 20308 . . . . . . . . . . . . . . . . . . . . . 22 (𝐽 ∈ Ring → 𝐽 ∈ Rng)
153, 14syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐽 ∈ Rng)
1613, 15eqeltrrid 2849 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑅s 𝐼) ∈ Rng)
1711, 12, 16rng2idlnsg 21299 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐼 ∈ (NrmSGrp‘𝑅))
18 nsgsubg 19198 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ (NrmSGrp‘𝑅) → 𝐼 ∈ (SubGrp‘𝑅))
1917, 18syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝐼 ∈ (SubGrp‘𝑅))
2019adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐵) → 𝐼 ∈ (SubGrp‘𝑅))
21 rngqiprngfu.b . . . . . . . . . . . . . . . . . 18 𝐵 = (Base‘𝑅)
22 rngqiprngfu.g . . . . . . . . . . . . . . . . . 18 = (𝑅 ~QG 𝐼)
2321, 22eqger 19218 . . . . . . . . . . . . . . . . 17 (𝐼 ∈ (SubGrp‘𝑅) → Er 𝐵)
2420, 23syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐵) → Er 𝐵)
25 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐵) → 𝑥𝐵)
2624, 25erth 8814 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐵) → (𝑥 𝐸 ↔ [𝑥] = [𝐸] ))
2726biimpa 476 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐵) ∧ 𝑥 𝐸) → [𝑥] = [𝐸] )
2827eqcomd 2746 . . . . . . . . . . . . 13 (((𝜑𝑥𝐵) ∧ 𝑥 𝐸) → [𝐸] = [𝑥] )
2928ex 412 . . . . . . . . . . . 12 ((𝜑𝑥𝐵) → (𝑥 𝐸 → [𝐸] = [𝑥] ))
3010, 29sylbid 240 . . . . . . . . . . 11 ((𝜑𝑥𝐵) → (𝐸 ∈ [𝑥] → [𝐸] = [𝑥] ))
3130adantr 480 . . . . . . . . . 10 (((𝜑𝑥𝐵) ∧ (1r𝑄) = [𝑥] ) → (𝐸 ∈ [𝑥] → [𝐸] = [𝑥] ))
328, 31sylbid 240 . . . . . . . . 9 (((𝜑𝑥𝐵) ∧ (1r𝑄) = [𝑥] ) → (𝐸 ∈ (1r𝑄) → [𝐸] = [𝑥] ))
3332ex 412 . . . . . . . 8 ((𝜑𝑥𝐵) → ((1r𝑄) = [𝑥] → (𝐸 ∈ (1r𝑄) → [𝐸] = [𝑥] )))
346, 33mpid 44 . . . . . . 7 ((𝜑𝑥𝐵) → ((1r𝑄) = [𝑥] → [𝐸] = [𝑥] ))
3534imp 406 . . . . . 6 (((𝜑𝑥𝐵) ∧ (1r𝑄) = [𝑥] ) → [𝐸] = [𝑥] )
36 simpr 484 . . . . . 6 (((𝜑𝑥𝐵) ∧ (1r𝑄) = [𝑥] ) → (1r𝑄) = [𝑥] )
3735, 36eqtr4d 2783 . . . . 5 (((𝜑𝑥𝐵) ∧ (1r𝑄) = [𝑥] ) → [𝐸] = (1r𝑄))
38 rngqiprngfu.t . . . . . 6 · = (.r𝑅)
39 rngqiprngfu.1 . . . . . 6 1 = (1r𝐽)
40 rngqiprngfu.q . . . . . 6 𝑄 = (𝑅 /s )
4111, 12, 13, 3, 21, 38, 39, 22, 40, 2rngqiprngfulem1 21344 . . . . 5 (𝜑 → ∃𝑥𝐵 (1r𝑄) = [𝑥] )
4237, 41r19.29a 3168 . . . 4 (𝜑 → [𝐸] = (1r𝑄))
4342eqcomd 2746 . . 3 (𝜑 → (1r𝑄) = [𝐸] )
4439eqcomi 2749 . . . 4 (1r𝐽) = 1
4544a1i 11 . . 3 (𝜑 → (1r𝐽) = 1 )
4643, 45opeq12d 4905 . 2 (𝜑 → ⟨(1r𝑄), (1r𝐽)⟩ = ⟨[𝐸] , 1 ⟩)
474, 46eqtrd 2780 1 (𝜑 → (1r𝑃) = ⟨[𝐸] , 1 ⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  cop 4654   class class class wbr 5166  cfv 6573  (class class class)co 7448   Er wer 8760  [cec 8761  Basecbs 17258  s cress 17287  +gcplusg 17311  .rcmulr 17312   /s cqus 17565   ×s cxps 17566  -gcsg 18975  SubGrpcsubg 19160  NrmSGrpcnsg 19161   ~QG cqg 19162  Rngcrng 20179  1rcur 20208  Ringcrg 20260  2Idealc2idl 21282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-ec 8765  df-qs 8769  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-prds 17507  df-imas 17568  df-qus 17569  df-xps 17570  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-subg 19163  df-nsg 19164  df-eqg 19165  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-subrng 20572  df-lss 20953  df-sra 21195  df-rgmod 21196  df-lidl 21241  df-2idl 21283
This theorem is referenced by:  rngqiprngu  21351
  Copyright terms: Public domain W3C validator