Step | Hyp | Ref
| Expression |
1 | | rngqipring1.p |
. . 3
β’ π = (π Γs π½) |
2 | | rngqiprngfu.v |
. . 3
β’ (π β π β Ring) |
3 | | rngqiprngfu.u |
. . 3
β’ (π β π½ β Ring) |
4 | 1, 2, 3 | xpsring1d 20221 |
. 2
β’ (π β (1rβπ) =
β¨(1rβπ), (1rβπ½)β©) |
5 | | rngqiprngfu.e |
. . . . . . . . 9
β’ (π β πΈ β (1rβπ)) |
6 | 5 | adantr 479 |
. . . . . . . 8
β’ ((π β§ π₯ β π΅) β πΈ β (1rβπ)) |
7 | | eleq2 2820 |
. . . . . . . . . . 11
β’
((1rβπ) = [π₯] βΌ β (πΈ β
(1rβπ)
β πΈ β [π₯] βΌ )) |
8 | 7 | adantl 480 |
. . . . . . . . . 10
β’ (((π β§ π₯ β π΅) β§ (1rβπ) = [π₯] βΌ ) β (πΈ β
(1rβπ)
β πΈ β [π₯] βΌ )) |
9 | | elecg 8748 |
. . . . . . . . . . . . 13
β’ ((πΈ β
(1rβπ)
β§ π₯ β π΅) β (πΈ β [π₯] βΌ β π₯ βΌ πΈ)) |
10 | 5, 9 | sylan 578 |
. . . . . . . . . . . 12
β’ ((π β§ π₯ β π΅) β (πΈ β [π₯] βΌ β π₯ βΌ πΈ)) |
11 | | rngqiprngfu.r |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β π
β Rng) |
12 | | rngqiprngfu.i |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β πΌ β (2Idealβπ
)) |
13 | | rngqiprngfu.j |
. . . . . . . . . . . . . . . . . . . . 21
β’ π½ = (π
βΎs πΌ) |
14 | | ringrng 20173 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π½ β Ring β π½ β Rng) |
15 | 3, 14 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π β π½ β Rng) |
16 | 13, 15 | eqeltrrid 2836 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β (π
βΎs πΌ) β Rng) |
17 | 11, 12, 16 | rng2idlnsg 21039 |
. . . . . . . . . . . . . . . . . . 19
β’ (π β πΌ β (NrmSGrpβπ
)) |
18 | | nsgsubg 19074 |
. . . . . . . . . . . . . . . . . . 19
β’ (πΌ β (NrmSGrpβπ
) β πΌ β (SubGrpβπ
)) |
19 | 17, 18 | syl 17 |
. . . . . . . . . . . . . . . . . 18
β’ (π β πΌ β (SubGrpβπ
)) |
20 | 19 | adantr 479 |
. . . . . . . . . . . . . . . . 17
β’ ((π β§ π₯ β π΅) β πΌ β (SubGrpβπ
)) |
21 | | rngqiprngfu.b |
. . . . . . . . . . . . . . . . . 18
β’ π΅ = (Baseβπ
) |
22 | | rngqiprngfu.g |
. . . . . . . . . . . . . . . . . 18
β’ βΌ =
(π
~QG
πΌ) |
23 | 21, 22 | eqger 19094 |
. . . . . . . . . . . . . . . . 17
β’ (πΌ β (SubGrpβπ
) β βΌ Er π΅) |
24 | 20, 23 | syl 17 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ π₯ β π΅) β βΌ Er π΅) |
25 | | simpr 483 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ π₯ β π΅) β π₯ β π΅) |
26 | 24, 25 | erth 8754 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π₯ β π΅) β (π₯ βΌ πΈ β [π₯] βΌ = [πΈ] βΌ )) |
27 | 26 | biimpa 475 |
. . . . . . . . . . . . . 14
β’ (((π β§ π₯ β π΅) β§ π₯ βΌ πΈ) β [π₯] βΌ = [πΈ] βΌ ) |
28 | 27 | eqcomd 2736 |
. . . . . . . . . . . . 13
β’ (((π β§ π₯ β π΅) β§ π₯ βΌ πΈ) β [πΈ] βΌ = [π₯] βΌ ) |
29 | 28 | ex 411 |
. . . . . . . . . . . 12
β’ ((π β§ π₯ β π΅) β (π₯ βΌ πΈ β [πΈ] βΌ = [π₯] βΌ )) |
30 | 10, 29 | sylbid 239 |
. . . . . . . . . . 11
β’ ((π β§ π₯ β π΅) β (πΈ β [π₯] βΌ β [πΈ] βΌ = [π₯] βΌ )) |
31 | 30 | adantr 479 |
. . . . . . . . . 10
β’ (((π β§ π₯ β π΅) β§ (1rβπ) = [π₯] βΌ ) β (πΈ β [π₯] βΌ β [πΈ] βΌ = [π₯] βΌ )) |
32 | 8, 31 | sylbid 239 |
. . . . . . . . 9
β’ (((π β§ π₯ β π΅) β§ (1rβπ) = [π₯] βΌ ) β (πΈ β
(1rβπ)
β [πΈ] βΌ =
[π₯] βΌ )) |
33 | 32 | ex 411 |
. . . . . . . 8
β’ ((π β§ π₯ β π΅) β ((1rβπ) = [π₯] βΌ β (πΈ β
(1rβπ)
β [πΈ] βΌ =
[π₯] βΌ
))) |
34 | 6, 33 | mpid 44 |
. . . . . . 7
β’ ((π β§ π₯ β π΅) β ((1rβπ) = [π₯] βΌ β [πΈ] βΌ = [π₯] βΌ )) |
35 | 34 | imp 405 |
. . . . . 6
β’ (((π β§ π₯ β π΅) β§ (1rβπ) = [π₯] βΌ ) β [πΈ] βΌ = [π₯] βΌ ) |
36 | | simpr 483 |
. . . . . 6
β’ (((π β§ π₯ β π΅) β§ (1rβπ) = [π₯] βΌ ) β
(1rβπ) =
[π₯] βΌ ) |
37 | 35, 36 | eqtr4d 2773 |
. . . . 5
β’ (((π β§ π₯ β π΅) β§ (1rβπ) = [π₯] βΌ ) β [πΈ] βΌ =
(1rβπ)) |
38 | | rngqiprngfu.t |
. . . . . 6
β’ Β· =
(.rβπ
) |
39 | | rngqiprngfu.1 |
. . . . . 6
β’ 1 =
(1rβπ½) |
40 | | rngqiprngfu.q |
. . . . . 6
β’ π = (π
/s βΌ ) |
41 | 11, 12, 13, 3, 21, 38, 39, 22, 40, 2 | rngqiprngfulem1 21070 |
. . . . 5
β’ (π β βπ₯ β π΅ (1rβπ) = [π₯] βΌ ) |
42 | 37, 41 | r19.29a 3160 |
. . . 4
β’ (π β [πΈ] βΌ =
(1rβπ)) |
43 | 42 | eqcomd 2736 |
. . 3
β’ (π β (1rβπ) = [πΈ] βΌ ) |
44 | 39 | eqcomi 2739 |
. . . 4
β’
(1rβπ½) = 1 |
45 | 44 | a1i 11 |
. . 3
β’ (π β (1rβπ½) = 1 ) |
46 | 43, 45 | opeq12d 4880 |
. 2
β’ (π β
β¨(1rβπ), (1rβπ½)β© = β¨[πΈ] βΌ , 1
β©) |
47 | 4, 46 | eqtrd 2770 |
1
β’ (π β (1rβπ) = β¨[πΈ] βΌ , 1
β©) |