MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngqipring1 Structured version   Visualization version   GIF version

Theorem rngqipring1 21282
Description: The ring unity of the product of the quotient with a two-sided ideal and the two-sided ideal, which both are rings. (Contributed by AV, 16-Mar-2025.)
Hypotheses
Ref Expression
rngqiprngfu.r (𝜑𝑅 ∈ Rng)
rngqiprngfu.i (𝜑𝐼 ∈ (2Ideal‘𝑅))
rngqiprngfu.j 𝐽 = (𝑅s 𝐼)
rngqiprngfu.u (𝜑𝐽 ∈ Ring)
rngqiprngfu.b 𝐵 = (Base‘𝑅)
rngqiprngfu.t · = (.r𝑅)
rngqiprngfu.1 1 = (1r𝐽)
rngqiprngfu.g = (𝑅 ~QG 𝐼)
rngqiprngfu.q 𝑄 = (𝑅 /s )
rngqiprngfu.v (𝜑𝑄 ∈ Ring)
rngqiprngfu.e (𝜑𝐸 ∈ (1r𝑄))
rngqiprngfu.m = (-g𝑅)
rngqiprngfu.a + = (+g𝑅)
rngqiprngfu.n 𝑈 = ((𝐸 ( 1 · 𝐸)) + 1 )
rngqipring1.p 𝑃 = (𝑄 ×s 𝐽)
Assertion
Ref Expression
rngqipring1 (𝜑 → (1r𝑃) = ⟨[𝐸] , 1 ⟩)

Proof of Theorem rngqipring1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rngqipring1.p . . 3 𝑃 = (𝑄 ×s 𝐽)
2 rngqiprngfu.v . . 3 (𝜑𝑄 ∈ Ring)
3 rngqiprngfu.u . . 3 (𝜑𝐽 ∈ Ring)
41, 2, 3xpsring1d 20298 . 2 (𝜑 → (1r𝑃) = ⟨(1r𝑄), (1r𝐽)⟩)
5 rngqiprngfu.e . . . . . . . . 9 (𝜑𝐸 ∈ (1r𝑄))
65adantr 480 . . . . . . . 8 ((𝜑𝑥𝐵) → 𝐸 ∈ (1r𝑄))
7 eleq2 2824 . . . . . . . . . . 11 ((1r𝑄) = [𝑥] → (𝐸 ∈ (1r𝑄) ↔ 𝐸 ∈ [𝑥] ))
87adantl 481 . . . . . . . . . 10 (((𝜑𝑥𝐵) ∧ (1r𝑄) = [𝑥] ) → (𝐸 ∈ (1r𝑄) ↔ 𝐸 ∈ [𝑥] ))
9 elecg 8768 . . . . . . . . . . . . 13 ((𝐸 ∈ (1r𝑄) ∧ 𝑥𝐵) → (𝐸 ∈ [𝑥] 𝑥 𝐸))
105, 9sylan 580 . . . . . . . . . . . 12 ((𝜑𝑥𝐵) → (𝐸 ∈ [𝑥] 𝑥 𝐸))
11 rngqiprngfu.r . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑅 ∈ Rng)
12 rngqiprngfu.i . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐼 ∈ (2Ideal‘𝑅))
13 rngqiprngfu.j . . . . . . . . . . . . . . . . . . . . 21 𝐽 = (𝑅s 𝐼)
14 ringrng 20250 . . . . . . . . . . . . . . . . . . . . . 22 (𝐽 ∈ Ring → 𝐽 ∈ Rng)
153, 14syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐽 ∈ Rng)
1613, 15eqeltrrid 2840 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑅s 𝐼) ∈ Rng)
1711, 12, 16rng2idlnsg 21232 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐼 ∈ (NrmSGrp‘𝑅))
18 nsgsubg 19146 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ (NrmSGrp‘𝑅) → 𝐼 ∈ (SubGrp‘𝑅))
1917, 18syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝐼 ∈ (SubGrp‘𝑅))
2019adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐵) → 𝐼 ∈ (SubGrp‘𝑅))
21 rngqiprngfu.b . . . . . . . . . . . . . . . . . 18 𝐵 = (Base‘𝑅)
22 rngqiprngfu.g . . . . . . . . . . . . . . . . . 18 = (𝑅 ~QG 𝐼)
2321, 22eqger 19166 . . . . . . . . . . . . . . . . 17 (𝐼 ∈ (SubGrp‘𝑅) → Er 𝐵)
2420, 23syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐵) → Er 𝐵)
25 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐵) → 𝑥𝐵)
2624, 25erth 8775 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐵) → (𝑥 𝐸 ↔ [𝑥] = [𝐸] ))
2726biimpa 476 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐵) ∧ 𝑥 𝐸) → [𝑥] = [𝐸] )
2827eqcomd 2742 . . . . . . . . . . . . 13 (((𝜑𝑥𝐵) ∧ 𝑥 𝐸) → [𝐸] = [𝑥] )
2928ex 412 . . . . . . . . . . . 12 ((𝜑𝑥𝐵) → (𝑥 𝐸 → [𝐸] = [𝑥] ))
3010, 29sylbid 240 . . . . . . . . . . 11 ((𝜑𝑥𝐵) → (𝐸 ∈ [𝑥] → [𝐸] = [𝑥] ))
3130adantr 480 . . . . . . . . . 10 (((𝜑𝑥𝐵) ∧ (1r𝑄) = [𝑥] ) → (𝐸 ∈ [𝑥] → [𝐸] = [𝑥] ))
328, 31sylbid 240 . . . . . . . . 9 (((𝜑𝑥𝐵) ∧ (1r𝑄) = [𝑥] ) → (𝐸 ∈ (1r𝑄) → [𝐸] = [𝑥] ))
3332ex 412 . . . . . . . 8 ((𝜑𝑥𝐵) → ((1r𝑄) = [𝑥] → (𝐸 ∈ (1r𝑄) → [𝐸] = [𝑥] )))
346, 33mpid 44 . . . . . . 7 ((𝜑𝑥𝐵) → ((1r𝑄) = [𝑥] → [𝐸] = [𝑥] ))
3534imp 406 . . . . . 6 (((𝜑𝑥𝐵) ∧ (1r𝑄) = [𝑥] ) → [𝐸] = [𝑥] )
36 simpr 484 . . . . . 6 (((𝜑𝑥𝐵) ∧ (1r𝑄) = [𝑥] ) → (1r𝑄) = [𝑥] )
3735, 36eqtr4d 2774 . . . . 5 (((𝜑𝑥𝐵) ∧ (1r𝑄) = [𝑥] ) → [𝐸] = (1r𝑄))
38 rngqiprngfu.t . . . . . 6 · = (.r𝑅)
39 rngqiprngfu.1 . . . . . 6 1 = (1r𝐽)
40 rngqiprngfu.q . . . . . 6 𝑄 = (𝑅 /s )
4111, 12, 13, 3, 21, 38, 39, 22, 40, 2rngqiprngfulem1 21277 . . . . 5 (𝜑 → ∃𝑥𝐵 (1r𝑄) = [𝑥] )
4237, 41r19.29a 3149 . . . 4 (𝜑 → [𝐸] = (1r𝑄))
4342eqcomd 2742 . . 3 (𝜑 → (1r𝑄) = [𝐸] )
4439eqcomi 2745 . . . 4 (1r𝐽) = 1
4544a1i 11 . . 3 (𝜑 → (1r𝐽) = 1 )
4643, 45opeq12d 4862 . 2 (𝜑 → ⟨(1r𝑄), (1r𝐽)⟩ = ⟨[𝐸] , 1 ⟩)
474, 46eqtrd 2771 1 (𝜑 → (1r𝑃) = ⟨[𝐸] , 1 ⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cop 4612   class class class wbr 5124  cfv 6536  (class class class)co 7410   Er wer 8721  [cec 8722  Basecbs 17233  s cress 17256  +gcplusg 17276  .rcmulr 17277   /s cqus 17524   ×s cxps 17525  -gcsg 18923  SubGrpcsubg 19108  NrmSGrpcnsg 19109   ~QG cqg 19110  Rngcrng 20117  1rcur 20146  Ringcrg 20198  2Idealc2idl 21215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-ec 8726  df-qs 8730  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-hom 17300  df-cco 17301  df-0g 17460  df-prds 17466  df-imas 17527  df-qus 17528  df-xps 17529  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925  df-subg 19111  df-nsg 19112  df-eqg 19113  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-subrng 20511  df-lss 20894  df-sra 21136  df-rgmod 21137  df-lidl 21174  df-2idl 21216
This theorem is referenced by:  rngqiprngu  21284
  Copyright terms: Public domain W3C validator