MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngqipring1 Structured version   Visualization version   GIF version

Theorem rngqipring1 21305
Description: The ring unity of the product of the quotient with a two-sided ideal and the two-sided ideal, which both are rings. (Contributed by AV, 16-Mar-2025.)
Hypotheses
Ref Expression
rngqiprngfu.r (𝜑𝑅 ∈ Rng)
rngqiprngfu.i (𝜑𝐼 ∈ (2Ideal‘𝑅))
rngqiprngfu.j 𝐽 = (𝑅s 𝐼)
rngqiprngfu.u (𝜑𝐽 ∈ Ring)
rngqiprngfu.b 𝐵 = (Base‘𝑅)
rngqiprngfu.t · = (.r𝑅)
rngqiprngfu.1 1 = (1r𝐽)
rngqiprngfu.g = (𝑅 ~QG 𝐼)
rngqiprngfu.q 𝑄 = (𝑅 /s )
rngqiprngfu.v (𝜑𝑄 ∈ Ring)
rngqiprngfu.e (𝜑𝐸 ∈ (1r𝑄))
rngqiprngfu.m = (-g𝑅)
rngqiprngfu.a + = (+g𝑅)
rngqiprngfu.n 𝑈 = ((𝐸 ( 1 · 𝐸)) + 1 )
rngqipring1.p 𝑃 = (𝑄 ×s 𝐽)
Assertion
Ref Expression
rngqipring1 (𝜑 → (1r𝑃) = ⟨[𝐸] , 1 ⟩)

Proof of Theorem rngqipring1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rngqipring1.p . . 3 𝑃 = (𝑄 ×s 𝐽)
2 rngqiprngfu.v . . 3 (𝜑𝑄 ∈ Ring)
3 rngqiprngfu.u . . 3 (𝜑𝐽 ∈ Ring)
41, 2, 3xpsring1d 20312 . 2 (𝜑 → (1r𝑃) = ⟨(1r𝑄), (1r𝐽)⟩)
5 rngqiprngfu.e . . . . . . . . 9 (𝜑𝐸 ∈ (1r𝑄))
65adantr 479 . . . . . . . 8 ((𝜑𝑥𝐵) → 𝐸 ∈ (1r𝑄))
7 eleq2 2815 . . . . . . . . . . 11 ((1r𝑄) = [𝑥] → (𝐸 ∈ (1r𝑄) ↔ 𝐸 ∈ [𝑥] ))
87adantl 480 . . . . . . . . . 10 (((𝜑𝑥𝐵) ∧ (1r𝑄) = [𝑥] ) → (𝐸 ∈ (1r𝑄) ↔ 𝐸 ∈ [𝑥] ))
9 elecg 8778 . . . . . . . . . . . . 13 ((𝐸 ∈ (1r𝑄) ∧ 𝑥𝐵) → (𝐸 ∈ [𝑥] 𝑥 𝐸))
105, 9sylan 578 . . . . . . . . . . . 12 ((𝜑𝑥𝐵) → (𝐸 ∈ [𝑥] 𝑥 𝐸))
11 rngqiprngfu.r . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑅 ∈ Rng)
12 rngqiprngfu.i . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐼 ∈ (2Ideal‘𝑅))
13 rngqiprngfu.j . . . . . . . . . . . . . . . . . . . . 21 𝐽 = (𝑅s 𝐼)
14 ringrng 20264 . . . . . . . . . . . . . . . . . . . . . 22 (𝐽 ∈ Ring → 𝐽 ∈ Rng)
153, 14syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐽 ∈ Rng)
1613, 15eqeltrrid 2831 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑅s 𝐼) ∈ Rng)
1711, 12, 16rng2idlnsg 21255 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐼 ∈ (NrmSGrp‘𝑅))
18 nsgsubg 19152 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ (NrmSGrp‘𝑅) → 𝐼 ∈ (SubGrp‘𝑅))
1917, 18syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝐼 ∈ (SubGrp‘𝑅))
2019adantr 479 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐵) → 𝐼 ∈ (SubGrp‘𝑅))
21 rngqiprngfu.b . . . . . . . . . . . . . . . . . 18 𝐵 = (Base‘𝑅)
22 rngqiprngfu.g . . . . . . . . . . . . . . . . . 18 = (𝑅 ~QG 𝐼)
2321, 22eqger 19172 . . . . . . . . . . . . . . . . 17 (𝐼 ∈ (SubGrp‘𝑅) → Er 𝐵)
2420, 23syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐵) → Er 𝐵)
25 simpr 483 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐵) → 𝑥𝐵)
2624, 25erth 8785 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐵) → (𝑥 𝐸 ↔ [𝑥] = [𝐸] ))
2726biimpa 475 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐵) ∧ 𝑥 𝐸) → [𝑥] = [𝐸] )
2827eqcomd 2732 . . . . . . . . . . . . 13 (((𝜑𝑥𝐵) ∧ 𝑥 𝐸) → [𝐸] = [𝑥] )
2928ex 411 . . . . . . . . . . . 12 ((𝜑𝑥𝐵) → (𝑥 𝐸 → [𝐸] = [𝑥] ))
3010, 29sylbid 239 . . . . . . . . . . 11 ((𝜑𝑥𝐵) → (𝐸 ∈ [𝑥] → [𝐸] = [𝑥] ))
3130adantr 479 . . . . . . . . . 10 (((𝜑𝑥𝐵) ∧ (1r𝑄) = [𝑥] ) → (𝐸 ∈ [𝑥] → [𝐸] = [𝑥] ))
328, 31sylbid 239 . . . . . . . . 9 (((𝜑𝑥𝐵) ∧ (1r𝑄) = [𝑥] ) → (𝐸 ∈ (1r𝑄) → [𝐸] = [𝑥] ))
3332ex 411 . . . . . . . 8 ((𝜑𝑥𝐵) → ((1r𝑄) = [𝑥] → (𝐸 ∈ (1r𝑄) → [𝐸] = [𝑥] )))
346, 33mpid 44 . . . . . . 7 ((𝜑𝑥𝐵) → ((1r𝑄) = [𝑥] → [𝐸] = [𝑥] ))
3534imp 405 . . . . . 6 (((𝜑𝑥𝐵) ∧ (1r𝑄) = [𝑥] ) → [𝐸] = [𝑥] )
36 simpr 483 . . . . . 6 (((𝜑𝑥𝐵) ∧ (1r𝑄) = [𝑥] ) → (1r𝑄) = [𝑥] )
3735, 36eqtr4d 2769 . . . . 5 (((𝜑𝑥𝐵) ∧ (1r𝑄) = [𝑥] ) → [𝐸] = (1r𝑄))
38 rngqiprngfu.t . . . . . 6 · = (.r𝑅)
39 rngqiprngfu.1 . . . . . 6 1 = (1r𝐽)
40 rngqiprngfu.q . . . . . 6 𝑄 = (𝑅 /s )
4111, 12, 13, 3, 21, 38, 39, 22, 40, 2rngqiprngfulem1 21300 . . . . 5 (𝜑 → ∃𝑥𝐵 (1r𝑄) = [𝑥] )
4237, 41r19.29a 3152 . . . 4 (𝜑 → [𝐸] = (1r𝑄))
4342eqcomd 2732 . . 3 (𝜑 → (1r𝑄) = [𝐸] )
4439eqcomi 2735 . . . 4 (1r𝐽) = 1
4544a1i 11 . . 3 (𝜑 → (1r𝐽) = 1 )
4643, 45opeq12d 4887 . 2 (𝜑 → ⟨(1r𝑄), (1r𝐽)⟩ = ⟨[𝐸] , 1 ⟩)
474, 46eqtrd 2766 1 (𝜑 → (1r𝑃) = ⟨[𝐸] , 1 ⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  cop 4639   class class class wbr 5153  cfv 6554  (class class class)co 7424   Er wer 8731  [cec 8732  Basecbs 17213  s cress 17242  +gcplusg 17266  .rcmulr 17267   /s cqus 17520   ×s cxps 17521  -gcsg 18930  SubGrpcsubg 19114  NrmSGrpcnsg 19115   ~QG cqg 19116  Rngcrng 20135  1rcur 20164  Ringcrg 20216  2Idealc2idl 21238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-2o 8497  df-er 8734  df-ec 8736  df-qs 8740  df-map 8857  df-ixp 8927  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-sup 9485  df-inf 9486  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12611  df-dec 12730  df-uz 12875  df-fz 13539  df-struct 17149  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-ress 17243  df-plusg 17279  df-mulr 17280  df-sca 17282  df-vsca 17283  df-ip 17284  df-tset 17285  df-ple 17286  df-ds 17288  df-hom 17290  df-cco 17291  df-0g 17456  df-prds 17462  df-imas 17523  df-qus 17524  df-xps 17525  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-grp 18931  df-minusg 18932  df-subg 19117  df-nsg 19118  df-eqg 19119  df-cmn 19780  df-abl 19781  df-mgp 20118  df-rng 20136  df-ur 20165  df-ring 20218  df-subrng 20528  df-lss 20909  df-sra 21151  df-rgmod 21152  df-lidl 21197  df-2idl 21239
This theorem is referenced by:  rngqiprngu  21307
  Copyright terms: Public domain W3C validator