MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngqipring1 Structured version   Visualization version   GIF version

Theorem rngqipring1 21075
Description: The ring unity of the product of the quotient with a two-sided ideal and the two-sided ideal, which both are rings. (Contributed by AV, 16-Mar-2025.)
Hypotheses
Ref Expression
rngqiprngfu.r (πœ‘ β†’ 𝑅 ∈ Rng)
rngqiprngfu.i (πœ‘ β†’ 𝐼 ∈ (2Idealβ€˜π‘…))
rngqiprngfu.j 𝐽 = (𝑅 β†Ύs 𝐼)
rngqiprngfu.u (πœ‘ β†’ 𝐽 ∈ Ring)
rngqiprngfu.b 𝐡 = (Baseβ€˜π‘…)
rngqiprngfu.t Β· = (.rβ€˜π‘…)
rngqiprngfu.1 1 = (1rβ€˜π½)
rngqiprngfu.g ∼ = (𝑅 ~QG 𝐼)
rngqiprngfu.q 𝑄 = (𝑅 /s ∼ )
rngqiprngfu.v (πœ‘ β†’ 𝑄 ∈ Ring)
rngqiprngfu.e (πœ‘ β†’ 𝐸 ∈ (1rβ€˜π‘„))
rngqiprngfu.m βˆ’ = (-gβ€˜π‘…)
rngqiprngfu.a + = (+gβ€˜π‘…)
rngqiprngfu.n π‘ˆ = ((𝐸 βˆ’ ( 1 Β· 𝐸)) + 1 )
rngqipring1.p 𝑃 = (𝑄 Γ—s 𝐽)
Assertion
Ref Expression
rngqipring1 (πœ‘ β†’ (1rβ€˜π‘ƒ) = ⟨[𝐸] ∼ , 1 ⟩)

Proof of Theorem rngqipring1
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 rngqipring1.p . . 3 𝑃 = (𝑄 Γ—s 𝐽)
2 rngqiprngfu.v . . 3 (πœ‘ β†’ 𝑄 ∈ Ring)
3 rngqiprngfu.u . . 3 (πœ‘ β†’ 𝐽 ∈ Ring)
41, 2, 3xpsring1d 20221 . 2 (πœ‘ β†’ (1rβ€˜π‘ƒ) = ⟨(1rβ€˜π‘„), (1rβ€˜π½)⟩)
5 rngqiprngfu.e . . . . . . . . 9 (πœ‘ β†’ 𝐸 ∈ (1rβ€˜π‘„))
65adantr 479 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ 𝐡) β†’ 𝐸 ∈ (1rβ€˜π‘„))
7 eleq2 2820 . . . . . . . . . . 11 ((1rβ€˜π‘„) = [π‘₯] ∼ β†’ (𝐸 ∈ (1rβ€˜π‘„) ↔ 𝐸 ∈ [π‘₯] ∼ ))
87adantl 480 . . . . . . . . . 10 (((πœ‘ ∧ π‘₯ ∈ 𝐡) ∧ (1rβ€˜π‘„) = [π‘₯] ∼ ) β†’ (𝐸 ∈ (1rβ€˜π‘„) ↔ 𝐸 ∈ [π‘₯] ∼ ))
9 elecg 8748 . . . . . . . . . . . . 13 ((𝐸 ∈ (1rβ€˜π‘„) ∧ π‘₯ ∈ 𝐡) β†’ (𝐸 ∈ [π‘₯] ∼ ↔ π‘₯ ∼ 𝐸))
105, 9sylan 578 . . . . . . . . . . . 12 ((πœ‘ ∧ π‘₯ ∈ 𝐡) β†’ (𝐸 ∈ [π‘₯] ∼ ↔ π‘₯ ∼ 𝐸))
11 rngqiprngfu.r . . . . . . . . . . . . . . . . . . . 20 (πœ‘ β†’ 𝑅 ∈ Rng)
12 rngqiprngfu.i . . . . . . . . . . . . . . . . . . . 20 (πœ‘ β†’ 𝐼 ∈ (2Idealβ€˜π‘…))
13 rngqiprngfu.j . . . . . . . . . . . . . . . . . . . . 21 𝐽 = (𝑅 β†Ύs 𝐼)
14 ringrng 20173 . . . . . . . . . . . . . . . . . . . . . 22 (𝐽 ∈ Ring β†’ 𝐽 ∈ Rng)
153, 14syl 17 . . . . . . . . . . . . . . . . . . . . 21 (πœ‘ β†’ 𝐽 ∈ Rng)
1613, 15eqeltrrid 2836 . . . . . . . . . . . . . . . . . . . 20 (πœ‘ β†’ (𝑅 β†Ύs 𝐼) ∈ Rng)
1711, 12, 16rng2idlnsg 21039 . . . . . . . . . . . . . . . . . . 19 (πœ‘ β†’ 𝐼 ∈ (NrmSGrpβ€˜π‘…))
18 nsgsubg 19074 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ (NrmSGrpβ€˜π‘…) β†’ 𝐼 ∈ (SubGrpβ€˜π‘…))
1917, 18syl 17 . . . . . . . . . . . . . . . . . 18 (πœ‘ β†’ 𝐼 ∈ (SubGrpβ€˜π‘…))
2019adantr 479 . . . . . . . . . . . . . . . . 17 ((πœ‘ ∧ π‘₯ ∈ 𝐡) β†’ 𝐼 ∈ (SubGrpβ€˜π‘…))
21 rngqiprngfu.b . . . . . . . . . . . . . . . . . 18 𝐡 = (Baseβ€˜π‘…)
22 rngqiprngfu.g . . . . . . . . . . . . . . . . . 18 ∼ = (𝑅 ~QG 𝐼)
2321, 22eqger 19094 . . . . . . . . . . . . . . . . 17 (𝐼 ∈ (SubGrpβ€˜π‘…) β†’ ∼ Er 𝐡)
2420, 23syl 17 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ π‘₯ ∈ 𝐡) β†’ ∼ Er 𝐡)
25 simpr 483 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ π‘₯ ∈ 𝐡) β†’ π‘₯ ∈ 𝐡)
2624, 25erth 8754 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ π‘₯ ∈ 𝐡) β†’ (π‘₯ ∼ 𝐸 ↔ [π‘₯] ∼ = [𝐸] ∼ ))
2726biimpa 475 . . . . . . . . . . . . . 14 (((πœ‘ ∧ π‘₯ ∈ 𝐡) ∧ π‘₯ ∼ 𝐸) β†’ [π‘₯] ∼ = [𝐸] ∼ )
2827eqcomd 2736 . . . . . . . . . . . . 13 (((πœ‘ ∧ π‘₯ ∈ 𝐡) ∧ π‘₯ ∼ 𝐸) β†’ [𝐸] ∼ = [π‘₯] ∼ )
2928ex 411 . . . . . . . . . . . 12 ((πœ‘ ∧ π‘₯ ∈ 𝐡) β†’ (π‘₯ ∼ 𝐸 β†’ [𝐸] ∼ = [π‘₯] ∼ ))
3010, 29sylbid 239 . . . . . . . . . . 11 ((πœ‘ ∧ π‘₯ ∈ 𝐡) β†’ (𝐸 ∈ [π‘₯] ∼ β†’ [𝐸] ∼ = [π‘₯] ∼ ))
3130adantr 479 . . . . . . . . . 10 (((πœ‘ ∧ π‘₯ ∈ 𝐡) ∧ (1rβ€˜π‘„) = [π‘₯] ∼ ) β†’ (𝐸 ∈ [π‘₯] ∼ β†’ [𝐸] ∼ = [π‘₯] ∼ ))
328, 31sylbid 239 . . . . . . . . 9 (((πœ‘ ∧ π‘₯ ∈ 𝐡) ∧ (1rβ€˜π‘„) = [π‘₯] ∼ ) β†’ (𝐸 ∈ (1rβ€˜π‘„) β†’ [𝐸] ∼ = [π‘₯] ∼ ))
3332ex 411 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ 𝐡) β†’ ((1rβ€˜π‘„) = [π‘₯] ∼ β†’ (𝐸 ∈ (1rβ€˜π‘„) β†’ [𝐸] ∼ = [π‘₯] ∼ )))
346, 33mpid 44 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ 𝐡) β†’ ((1rβ€˜π‘„) = [π‘₯] ∼ β†’ [𝐸] ∼ = [π‘₯] ∼ ))
3534imp 405 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ 𝐡) ∧ (1rβ€˜π‘„) = [π‘₯] ∼ ) β†’ [𝐸] ∼ = [π‘₯] ∼ )
36 simpr 483 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ 𝐡) ∧ (1rβ€˜π‘„) = [π‘₯] ∼ ) β†’ (1rβ€˜π‘„) = [π‘₯] ∼ )
3735, 36eqtr4d 2773 . . . . 5 (((πœ‘ ∧ π‘₯ ∈ 𝐡) ∧ (1rβ€˜π‘„) = [π‘₯] ∼ ) β†’ [𝐸] ∼ = (1rβ€˜π‘„))
38 rngqiprngfu.t . . . . . 6 Β· = (.rβ€˜π‘…)
39 rngqiprngfu.1 . . . . . 6 1 = (1rβ€˜π½)
40 rngqiprngfu.q . . . . . 6 𝑄 = (𝑅 /s ∼ )
4111, 12, 13, 3, 21, 38, 39, 22, 40, 2rngqiprngfulem1 21070 . . . . 5 (πœ‘ β†’ βˆƒπ‘₯ ∈ 𝐡 (1rβ€˜π‘„) = [π‘₯] ∼ )
4237, 41r19.29a 3160 . . . 4 (πœ‘ β†’ [𝐸] ∼ = (1rβ€˜π‘„))
4342eqcomd 2736 . . 3 (πœ‘ β†’ (1rβ€˜π‘„) = [𝐸] ∼ )
4439eqcomi 2739 . . . 4 (1rβ€˜π½) = 1
4544a1i 11 . . 3 (πœ‘ β†’ (1rβ€˜π½) = 1 )
4643, 45opeq12d 4880 . 2 (πœ‘ β†’ ⟨(1rβ€˜π‘„), (1rβ€˜π½)⟩ = ⟨[𝐸] ∼ , 1 ⟩)
474, 46eqtrd 2770 1 (πœ‘ β†’ (1rβ€˜π‘ƒ) = ⟨[𝐸] ∼ , 1 ⟩)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   = wceq 1539   ∈ wcel 2104  βŸ¨cop 4633   class class class wbr 5147  β€˜cfv 6542  (class class class)co 7411   Er wer 8702  [cec 8703  Basecbs 17148   β†Ύs cress 17177  +gcplusg 17201  .rcmulr 17202   /s cqus 17455   Γ—s cxps 17456  -gcsg 18857  SubGrpcsubg 19036  NrmSGrpcnsg 19037   ~QG cqg 19038  Rngcrng 20046  1rcur 20075  Ringcrg 20127  2Idealc2idl 21005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-er 8705  df-ec 8707  df-qs 8711  df-map 8824  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-sup 9439  df-inf 9440  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-z 12563  df-dec 12682  df-uz 12827  df-fz 13489  df-struct 17084  df-sets 17101  df-slot 17119  df-ndx 17131  df-base 17149  df-ress 17178  df-plusg 17214  df-mulr 17215  df-sca 17217  df-vsca 17218  df-ip 17219  df-tset 17220  df-ple 17221  df-ds 17223  df-hom 17225  df-cco 17226  df-0g 17391  df-prds 17397  df-imas 17458  df-qus 17459  df-xps 17460  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-grp 18858  df-minusg 18859  df-subg 19039  df-nsg 19040  df-eqg 19041  df-cmn 19691  df-abl 19692  df-mgp 20029  df-rng 20047  df-ur 20076  df-ring 20129  df-subrng 20434  df-lss 20687  df-sra 20930  df-rgmod 20931  df-lidl 20932  df-2idl 21006
This theorem is referenced by:  rngqiprngu  21077
  Copyright terms: Public domain W3C validator