| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > idahom | Structured version Visualization version GIF version | ||
| Description: Domain and codomain of the identity arrow. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| idafval.i | ⊢ 𝐼 = (Ida‘𝐶) |
| idafval.b | ⊢ 𝐵 = (Base‘𝐶) |
| idafval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| idahom.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| idahom.h | ⊢ 𝐻 = (Homa‘𝐶) |
| Ref | Expression |
|---|---|
| idahom | ⊢ (𝜑 → (𝐼‘𝑋) ∈ (𝑋𝐻𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idafval.i | . . 3 ⊢ 𝐼 = (Ida‘𝐶) | |
| 2 | idafval.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | idafval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 4 | eqid 2731 | . . 3 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 5 | idahom.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 6 | 1, 2, 3, 4, 5 | idaval 17965 | . 2 ⊢ (𝜑 → (𝐼‘𝑋) = 〈𝑋, 𝑋, ((Id‘𝐶)‘𝑋)〉) |
| 7 | idahom.h | . . 3 ⊢ 𝐻 = (Homa‘𝐶) | |
| 8 | eqid 2731 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 9 | 2, 8, 4, 3, 5 | catidcl 17588 | . . 3 ⊢ (𝜑 → ((Id‘𝐶)‘𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋)) |
| 10 | 7, 2, 3, 8, 5, 5, 9 | elhomai2 17941 | . 2 ⊢ (𝜑 → 〈𝑋, 𝑋, ((Id‘𝐶)‘𝑋)〉 ∈ (𝑋𝐻𝑋)) |
| 11 | 6, 10 | eqeltrd 2831 | 1 ⊢ (𝜑 → (𝐼‘𝑋) ∈ (𝑋𝐻𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 〈cotp 4581 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 Hom chom 17172 Catccat 17570 Idccid 17571 Homachoma 17930 Idacida 17960 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-ot 4582 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-cat 17574 df-cid 17575 df-homa 17933 df-ida 17962 |
| This theorem is referenced by: idadm 17968 idacd 17969 idaf 17970 arwlid 17979 arwrid 17980 |
| Copyright terms: Public domain | W3C validator |