Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > idahom | Structured version Visualization version GIF version |
Description: Domain and codomain of the identity arrow. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
idafval.i | ⊢ 𝐼 = (Ida‘𝐶) |
idafval.b | ⊢ 𝐵 = (Base‘𝐶) |
idafval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
idahom.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
idahom.h | ⊢ 𝐻 = (Homa‘𝐶) |
Ref | Expression |
---|---|
idahom | ⊢ (𝜑 → (𝐼‘𝑋) ∈ (𝑋𝐻𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idafval.i | . . 3 ⊢ 𝐼 = (Ida‘𝐶) | |
2 | idafval.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
3 | idafval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
4 | eqid 2736 | . . 3 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
5 | idahom.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
6 | 1, 2, 3, 4, 5 | idaval 17818 | . 2 ⊢ (𝜑 → (𝐼‘𝑋) = ⟨𝑋, 𝑋, ((Id‘𝐶)‘𝑋)⟩) |
7 | idahom.h | . . 3 ⊢ 𝐻 = (Homa‘𝐶) | |
8 | eqid 2736 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
9 | 2, 8, 4, 3, 5 | catidcl 17436 | . . 3 ⊢ (𝜑 → ((Id‘𝐶)‘𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋)) |
10 | 7, 2, 3, 8, 5, 5, 9 | elhomai2 17794 | . 2 ⊢ (𝜑 → ⟨𝑋, 𝑋, ((Id‘𝐶)‘𝑋)⟩ ∈ (𝑋𝐻𝑋)) |
11 | 6, 10 | eqeltrd 2837 | 1 ⊢ (𝜑 → (𝐼‘𝑋) ∈ (𝑋𝐻𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 ⟨cotp 4573 ‘cfv 6458 (class class class)co 7307 Basecbs 16957 Hom chom 17018 Catccat 17418 Idccid 17419 Homachoma 17783 Idacida 17813 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-ot 4574 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-cat 17422 df-cid 17423 df-homa 17786 df-ida 17815 |
This theorem is referenced by: idadm 17821 idacd 17822 idaf 17823 arwlid 17832 arwrid 17833 |
Copyright terms: Public domain | W3C validator |