![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > elnlfn2 | Structured version Visualization version GIF version |
Description: Membership in the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elnlfn2 | β’ ((π: ββΆβ β§ π΄ β (nullβπ)) β (πβπ΄) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnlfn 31448 | . 2 β’ (π: ββΆβ β (π΄ β (nullβπ) β (π΄ β β β§ (πβπ΄) = 0))) | |
2 | 1 | simplbda 498 | 1 β’ ((π: ββΆβ β§ π΄ β (nullβπ)) β (πβπ΄) = 0) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1539 β wcel 2104 βΆwf 6538 βcfv 6542 βcc 11110 0cc0 11112 βchba 30439 nullcnl 30472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-mulcl 11174 ax-i2m1 11180 ax-hilex 30519 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 df-map 8824 df-nlfn 31366 |
This theorem is referenced by: nlelchi 31581 riesz3i 31582 |
Copyright terms: Public domain | W3C validator |