HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cnfnc Structured version   Visualization version   GIF version

Theorem cnfnc 31917
Description: Basic continuity property of a continuous functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
cnfnc ((𝑇 ∈ ContFn ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℝ+) → ∃𝑥 ∈ ℝ+𝑦 ∈ ℋ ((norm‘(𝑦 𝐴)) < 𝑥 → (abs‘((𝑇𝑦) − (𝑇𝐴))) < 𝐵))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝑇,𝑦

Proof of Theorem cnfnc
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elcnfn 31869 . . . 4 (𝑇 ∈ ContFn ↔ (𝑇: ℋ⟶ℂ ∧ ∀𝑧 ∈ ℋ ∀𝑤 ∈ ℝ+𝑥 ∈ ℝ+𝑦 ∈ ℋ ((norm‘(𝑦 𝑧)) < 𝑥 → (abs‘((𝑇𝑦) − (𝑇𝑧))) < 𝑤)))
21simprbi 496 . . 3 (𝑇 ∈ ContFn → ∀𝑧 ∈ ℋ ∀𝑤 ∈ ℝ+𝑥 ∈ ℝ+𝑦 ∈ ℋ ((norm‘(𝑦 𝑧)) < 𝑥 → (abs‘((𝑇𝑦) − (𝑇𝑧))) < 𝑤))
3 oveq2 7360 . . . . . . . 8 (𝑧 = 𝐴 → (𝑦 𝑧) = (𝑦 𝐴))
43fveq2d 6832 . . . . . . 7 (𝑧 = 𝐴 → (norm‘(𝑦 𝑧)) = (norm‘(𝑦 𝐴)))
54breq1d 5103 . . . . . 6 (𝑧 = 𝐴 → ((norm‘(𝑦 𝑧)) < 𝑥 ↔ (norm‘(𝑦 𝐴)) < 𝑥))
6 fveq2 6828 . . . . . . . . 9 (𝑧 = 𝐴 → (𝑇𝑧) = (𝑇𝐴))
76oveq2d 7368 . . . . . . . 8 (𝑧 = 𝐴 → ((𝑇𝑦) − (𝑇𝑧)) = ((𝑇𝑦) − (𝑇𝐴)))
87fveq2d 6832 . . . . . . 7 (𝑧 = 𝐴 → (abs‘((𝑇𝑦) − (𝑇𝑧))) = (abs‘((𝑇𝑦) − (𝑇𝐴))))
98breq1d 5103 . . . . . 6 (𝑧 = 𝐴 → ((abs‘((𝑇𝑦) − (𝑇𝑧))) < 𝑤 ↔ (abs‘((𝑇𝑦) − (𝑇𝐴))) < 𝑤))
105, 9imbi12d 344 . . . . 5 (𝑧 = 𝐴 → (((norm‘(𝑦 𝑧)) < 𝑥 → (abs‘((𝑇𝑦) − (𝑇𝑧))) < 𝑤) ↔ ((norm‘(𝑦 𝐴)) < 𝑥 → (abs‘((𝑇𝑦) − (𝑇𝐴))) < 𝑤)))
1110rexralbidv 3198 . . . 4 (𝑧 = 𝐴 → (∃𝑥 ∈ ℝ+𝑦 ∈ ℋ ((norm‘(𝑦 𝑧)) < 𝑥 → (abs‘((𝑇𝑦) − (𝑇𝑧))) < 𝑤) ↔ ∃𝑥 ∈ ℝ+𝑦 ∈ ℋ ((norm‘(𝑦 𝐴)) < 𝑥 → (abs‘((𝑇𝑦) − (𝑇𝐴))) < 𝑤)))
12 breq2 5097 . . . . . 6 (𝑤 = 𝐵 → ((abs‘((𝑇𝑦) − (𝑇𝐴))) < 𝑤 ↔ (abs‘((𝑇𝑦) − (𝑇𝐴))) < 𝐵))
1312imbi2d 340 . . . . 5 (𝑤 = 𝐵 → (((norm‘(𝑦 𝐴)) < 𝑥 → (abs‘((𝑇𝑦) − (𝑇𝐴))) < 𝑤) ↔ ((norm‘(𝑦 𝐴)) < 𝑥 → (abs‘((𝑇𝑦) − (𝑇𝐴))) < 𝐵)))
1413rexralbidv 3198 . . . 4 (𝑤 = 𝐵 → (∃𝑥 ∈ ℝ+𝑦 ∈ ℋ ((norm‘(𝑦 𝐴)) < 𝑥 → (abs‘((𝑇𝑦) − (𝑇𝐴))) < 𝑤) ↔ ∃𝑥 ∈ ℝ+𝑦 ∈ ℋ ((norm‘(𝑦 𝐴)) < 𝑥 → (abs‘((𝑇𝑦) − (𝑇𝐴))) < 𝐵)))
1511, 14rspc2v 3583 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℝ+) → (∀𝑧 ∈ ℋ ∀𝑤 ∈ ℝ+𝑥 ∈ ℝ+𝑦 ∈ ℋ ((norm‘(𝑦 𝑧)) < 𝑥 → (abs‘((𝑇𝑦) − (𝑇𝑧))) < 𝑤) → ∃𝑥 ∈ ℝ+𝑦 ∈ ℋ ((norm‘(𝑦 𝐴)) < 𝑥 → (abs‘((𝑇𝑦) − (𝑇𝐴))) < 𝐵)))
162, 15syl5com 31 . 2 (𝑇 ∈ ContFn → ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℝ+) → ∃𝑥 ∈ ℝ+𝑦 ∈ ℋ ((norm‘(𝑦 𝐴)) < 𝑥 → (abs‘((𝑇𝑦) − (𝑇𝐴))) < 𝐵)))
17163impib 1116 1 ((𝑇 ∈ ContFn ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℝ+) → ∃𝑥 ∈ ℝ+𝑦 ∈ ℋ ((norm‘(𝑦 𝐴)) < 𝑥 → (abs‘((𝑇𝑦) − (𝑇𝐴))) < 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wrex 3056   class class class wbr 5093  wf 6483  cfv 6487  (class class class)co 7352  cc 11010   < clt 11152  cmin 11350  +crp 12896  abscabs 15147  chba 30906  normcno 30910   cmv 30912  ContFnccnfn 30940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-hilex 30986
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-fv 6495  df-ov 7355  df-oprab 7356  df-mpo 7357  df-map 8758  df-cnfn 31834
This theorem is referenced by:  nmcfnexi  32038
  Copyright terms: Public domain W3C validator