HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cnfnc Structured version   Visualization version   GIF version

Theorem cnfnc 31900
Description: Basic continuity property of a continuous functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
cnfnc ((𝑇 ∈ ContFn ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℝ+) → ∃𝑥 ∈ ℝ+𝑦 ∈ ℋ ((norm‘(𝑦 𝐴)) < 𝑥 → (abs‘((𝑇𝑦) − (𝑇𝐴))) < 𝐵))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝑇,𝑦

Proof of Theorem cnfnc
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elcnfn 31852 . . . 4 (𝑇 ∈ ContFn ↔ (𝑇: ℋ⟶ℂ ∧ ∀𝑧 ∈ ℋ ∀𝑤 ∈ ℝ+𝑥 ∈ ℝ+𝑦 ∈ ℋ ((norm‘(𝑦 𝑧)) < 𝑥 → (abs‘((𝑇𝑦) − (𝑇𝑧))) < 𝑤)))
21simprbi 496 . . 3 (𝑇 ∈ ContFn → ∀𝑧 ∈ ℋ ∀𝑤 ∈ ℝ+𝑥 ∈ ℝ+𝑦 ∈ ℋ ((norm‘(𝑦 𝑧)) < 𝑥 → (abs‘((𝑇𝑦) − (𝑇𝑧))) < 𝑤))
3 oveq2 7349 . . . . . . . 8 (𝑧 = 𝐴 → (𝑦 𝑧) = (𝑦 𝐴))
43fveq2d 6821 . . . . . . 7 (𝑧 = 𝐴 → (norm‘(𝑦 𝑧)) = (norm‘(𝑦 𝐴)))
54breq1d 5099 . . . . . 6 (𝑧 = 𝐴 → ((norm‘(𝑦 𝑧)) < 𝑥 ↔ (norm‘(𝑦 𝐴)) < 𝑥))
6 fveq2 6817 . . . . . . . . 9 (𝑧 = 𝐴 → (𝑇𝑧) = (𝑇𝐴))
76oveq2d 7357 . . . . . . . 8 (𝑧 = 𝐴 → ((𝑇𝑦) − (𝑇𝑧)) = ((𝑇𝑦) − (𝑇𝐴)))
87fveq2d 6821 . . . . . . 7 (𝑧 = 𝐴 → (abs‘((𝑇𝑦) − (𝑇𝑧))) = (abs‘((𝑇𝑦) − (𝑇𝐴))))
98breq1d 5099 . . . . . 6 (𝑧 = 𝐴 → ((abs‘((𝑇𝑦) − (𝑇𝑧))) < 𝑤 ↔ (abs‘((𝑇𝑦) − (𝑇𝐴))) < 𝑤))
105, 9imbi12d 344 . . . . 5 (𝑧 = 𝐴 → (((norm‘(𝑦 𝑧)) < 𝑥 → (abs‘((𝑇𝑦) − (𝑇𝑧))) < 𝑤) ↔ ((norm‘(𝑦 𝐴)) < 𝑥 → (abs‘((𝑇𝑦) − (𝑇𝐴))) < 𝑤)))
1110rexralbidv 3196 . . . 4 (𝑧 = 𝐴 → (∃𝑥 ∈ ℝ+𝑦 ∈ ℋ ((norm‘(𝑦 𝑧)) < 𝑥 → (abs‘((𝑇𝑦) − (𝑇𝑧))) < 𝑤) ↔ ∃𝑥 ∈ ℝ+𝑦 ∈ ℋ ((norm‘(𝑦 𝐴)) < 𝑥 → (abs‘((𝑇𝑦) − (𝑇𝐴))) < 𝑤)))
12 breq2 5093 . . . . . 6 (𝑤 = 𝐵 → ((abs‘((𝑇𝑦) − (𝑇𝐴))) < 𝑤 ↔ (abs‘((𝑇𝑦) − (𝑇𝐴))) < 𝐵))
1312imbi2d 340 . . . . 5 (𝑤 = 𝐵 → (((norm‘(𝑦 𝐴)) < 𝑥 → (abs‘((𝑇𝑦) − (𝑇𝐴))) < 𝑤) ↔ ((norm‘(𝑦 𝐴)) < 𝑥 → (abs‘((𝑇𝑦) − (𝑇𝐴))) < 𝐵)))
1413rexralbidv 3196 . . . 4 (𝑤 = 𝐵 → (∃𝑥 ∈ ℝ+𝑦 ∈ ℋ ((norm‘(𝑦 𝐴)) < 𝑥 → (abs‘((𝑇𝑦) − (𝑇𝐴))) < 𝑤) ↔ ∃𝑥 ∈ ℝ+𝑦 ∈ ℋ ((norm‘(𝑦 𝐴)) < 𝑥 → (abs‘((𝑇𝑦) − (𝑇𝐴))) < 𝐵)))
1511, 14rspc2v 3586 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℝ+) → (∀𝑧 ∈ ℋ ∀𝑤 ∈ ℝ+𝑥 ∈ ℝ+𝑦 ∈ ℋ ((norm‘(𝑦 𝑧)) < 𝑥 → (abs‘((𝑇𝑦) − (𝑇𝑧))) < 𝑤) → ∃𝑥 ∈ ℝ+𝑦 ∈ ℋ ((norm‘(𝑦 𝐴)) < 𝑥 → (abs‘((𝑇𝑦) − (𝑇𝐴))) < 𝐵)))
162, 15syl5com 31 . 2 (𝑇 ∈ ContFn → ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℝ+) → ∃𝑥 ∈ ℝ+𝑦 ∈ ℋ ((norm‘(𝑦 𝐴)) < 𝑥 → (abs‘((𝑇𝑦) − (𝑇𝐴))) < 𝐵)))
17163impib 1116 1 ((𝑇 ∈ ContFn ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℝ+) → ∃𝑥 ∈ ℝ+𝑦 ∈ ℋ ((norm‘(𝑦 𝐴)) < 𝑥 → (abs‘((𝑇𝑦) − (𝑇𝐴))) < 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2110  wral 3045  wrex 3054   class class class wbr 5089  wf 6473  cfv 6477  (class class class)co 7341  cc 10996   < clt 11138  cmin 11336  +crp 12882  abscabs 15133  chba 30889  normcno 30893   cmv 30895  ContFnccnfn 30923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-hilex 30969
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-sbc 3740  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-map 8747  df-cnfn 31817
This theorem is referenced by:  nmcfnexi  32021
  Copyright terms: Public domain W3C validator