HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cnfnc Structured version   Visualization version   GIF version

Theorem cnfnc 31183
Description: Basic continuity property of a continuous functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
cnfnc ((𝑇 ∈ ContFn ∧ 𝐴 ∈ β„‹ ∧ 𝐡 ∈ ℝ+) β†’ βˆƒπ‘₯ ∈ ℝ+ βˆ€π‘¦ ∈ β„‹ ((normβ„Žβ€˜(𝑦 βˆ’β„Ž 𝐴)) < π‘₯ β†’ (absβ€˜((π‘‡β€˜π‘¦) βˆ’ (π‘‡β€˜π΄))) < 𝐡))
Distinct variable groups:   π‘₯,𝑦,𝐴   π‘₯,𝐡,𝑦   π‘₯,𝑇,𝑦

Proof of Theorem cnfnc
Dummy variables 𝑀 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elcnfn 31135 . . . 4 (𝑇 ∈ ContFn ↔ (𝑇: β„‹βŸΆβ„‚ ∧ βˆ€π‘§ ∈ β„‹ βˆ€π‘€ ∈ ℝ+ βˆƒπ‘₯ ∈ ℝ+ βˆ€π‘¦ ∈ β„‹ ((normβ„Žβ€˜(𝑦 βˆ’β„Ž 𝑧)) < π‘₯ β†’ (absβ€˜((π‘‡β€˜π‘¦) βˆ’ (π‘‡β€˜π‘§))) < 𝑀)))
21simprbi 498 . . 3 (𝑇 ∈ ContFn β†’ βˆ€π‘§ ∈ β„‹ βˆ€π‘€ ∈ ℝ+ βˆƒπ‘₯ ∈ ℝ+ βˆ€π‘¦ ∈ β„‹ ((normβ„Žβ€˜(𝑦 βˆ’β„Ž 𝑧)) < π‘₯ β†’ (absβ€˜((π‘‡β€˜π‘¦) βˆ’ (π‘‡β€˜π‘§))) < 𝑀))
3 oveq2 7417 . . . . . . . 8 (𝑧 = 𝐴 β†’ (𝑦 βˆ’β„Ž 𝑧) = (𝑦 βˆ’β„Ž 𝐴))
43fveq2d 6896 . . . . . . 7 (𝑧 = 𝐴 β†’ (normβ„Žβ€˜(𝑦 βˆ’β„Ž 𝑧)) = (normβ„Žβ€˜(𝑦 βˆ’β„Ž 𝐴)))
54breq1d 5159 . . . . . 6 (𝑧 = 𝐴 β†’ ((normβ„Žβ€˜(𝑦 βˆ’β„Ž 𝑧)) < π‘₯ ↔ (normβ„Žβ€˜(𝑦 βˆ’β„Ž 𝐴)) < π‘₯))
6 fveq2 6892 . . . . . . . . 9 (𝑧 = 𝐴 β†’ (π‘‡β€˜π‘§) = (π‘‡β€˜π΄))
76oveq2d 7425 . . . . . . . 8 (𝑧 = 𝐴 β†’ ((π‘‡β€˜π‘¦) βˆ’ (π‘‡β€˜π‘§)) = ((π‘‡β€˜π‘¦) βˆ’ (π‘‡β€˜π΄)))
87fveq2d 6896 . . . . . . 7 (𝑧 = 𝐴 β†’ (absβ€˜((π‘‡β€˜π‘¦) βˆ’ (π‘‡β€˜π‘§))) = (absβ€˜((π‘‡β€˜π‘¦) βˆ’ (π‘‡β€˜π΄))))
98breq1d 5159 . . . . . 6 (𝑧 = 𝐴 β†’ ((absβ€˜((π‘‡β€˜π‘¦) βˆ’ (π‘‡β€˜π‘§))) < 𝑀 ↔ (absβ€˜((π‘‡β€˜π‘¦) βˆ’ (π‘‡β€˜π΄))) < 𝑀))
105, 9imbi12d 345 . . . . 5 (𝑧 = 𝐴 β†’ (((normβ„Žβ€˜(𝑦 βˆ’β„Ž 𝑧)) < π‘₯ β†’ (absβ€˜((π‘‡β€˜π‘¦) βˆ’ (π‘‡β€˜π‘§))) < 𝑀) ↔ ((normβ„Žβ€˜(𝑦 βˆ’β„Ž 𝐴)) < π‘₯ β†’ (absβ€˜((π‘‡β€˜π‘¦) βˆ’ (π‘‡β€˜π΄))) < 𝑀)))
1110rexralbidv 3221 . . . 4 (𝑧 = 𝐴 β†’ (βˆƒπ‘₯ ∈ ℝ+ βˆ€π‘¦ ∈ β„‹ ((normβ„Žβ€˜(𝑦 βˆ’β„Ž 𝑧)) < π‘₯ β†’ (absβ€˜((π‘‡β€˜π‘¦) βˆ’ (π‘‡β€˜π‘§))) < 𝑀) ↔ βˆƒπ‘₯ ∈ ℝ+ βˆ€π‘¦ ∈ β„‹ ((normβ„Žβ€˜(𝑦 βˆ’β„Ž 𝐴)) < π‘₯ β†’ (absβ€˜((π‘‡β€˜π‘¦) βˆ’ (π‘‡β€˜π΄))) < 𝑀)))
12 breq2 5153 . . . . . 6 (𝑀 = 𝐡 β†’ ((absβ€˜((π‘‡β€˜π‘¦) βˆ’ (π‘‡β€˜π΄))) < 𝑀 ↔ (absβ€˜((π‘‡β€˜π‘¦) βˆ’ (π‘‡β€˜π΄))) < 𝐡))
1312imbi2d 341 . . . . 5 (𝑀 = 𝐡 β†’ (((normβ„Žβ€˜(𝑦 βˆ’β„Ž 𝐴)) < π‘₯ β†’ (absβ€˜((π‘‡β€˜π‘¦) βˆ’ (π‘‡β€˜π΄))) < 𝑀) ↔ ((normβ„Žβ€˜(𝑦 βˆ’β„Ž 𝐴)) < π‘₯ β†’ (absβ€˜((π‘‡β€˜π‘¦) βˆ’ (π‘‡β€˜π΄))) < 𝐡)))
1413rexralbidv 3221 . . . 4 (𝑀 = 𝐡 β†’ (βˆƒπ‘₯ ∈ ℝ+ βˆ€π‘¦ ∈ β„‹ ((normβ„Žβ€˜(𝑦 βˆ’β„Ž 𝐴)) < π‘₯ β†’ (absβ€˜((π‘‡β€˜π‘¦) βˆ’ (π‘‡β€˜π΄))) < 𝑀) ↔ βˆƒπ‘₯ ∈ ℝ+ βˆ€π‘¦ ∈ β„‹ ((normβ„Žβ€˜(𝑦 βˆ’β„Ž 𝐴)) < π‘₯ β†’ (absβ€˜((π‘‡β€˜π‘¦) βˆ’ (π‘‡β€˜π΄))) < 𝐡)))
1511, 14rspc2v 3623 . . 3 ((𝐴 ∈ β„‹ ∧ 𝐡 ∈ ℝ+) β†’ (βˆ€π‘§ ∈ β„‹ βˆ€π‘€ ∈ ℝ+ βˆƒπ‘₯ ∈ ℝ+ βˆ€π‘¦ ∈ β„‹ ((normβ„Žβ€˜(𝑦 βˆ’β„Ž 𝑧)) < π‘₯ β†’ (absβ€˜((π‘‡β€˜π‘¦) βˆ’ (π‘‡β€˜π‘§))) < 𝑀) β†’ βˆƒπ‘₯ ∈ ℝ+ βˆ€π‘¦ ∈ β„‹ ((normβ„Žβ€˜(𝑦 βˆ’β„Ž 𝐴)) < π‘₯ β†’ (absβ€˜((π‘‡β€˜π‘¦) βˆ’ (π‘‡β€˜π΄))) < 𝐡)))
162, 15syl5com 31 . 2 (𝑇 ∈ ContFn β†’ ((𝐴 ∈ β„‹ ∧ 𝐡 ∈ ℝ+) β†’ βˆƒπ‘₯ ∈ ℝ+ βˆ€π‘¦ ∈ β„‹ ((normβ„Žβ€˜(𝑦 βˆ’β„Ž 𝐴)) < π‘₯ β†’ (absβ€˜((π‘‡β€˜π‘¦) βˆ’ (π‘‡β€˜π΄))) < 𝐡)))
17163impib 1117 1 ((𝑇 ∈ ContFn ∧ 𝐴 ∈ β„‹ ∧ 𝐡 ∈ ℝ+) β†’ βˆƒπ‘₯ ∈ ℝ+ βˆ€π‘¦ ∈ β„‹ ((normβ„Žβ€˜(𝑦 βˆ’β„Ž 𝐴)) < π‘₯ β†’ (absβ€˜((π‘‡β€˜π‘¦) βˆ’ (π‘‡β€˜π΄))) < 𝐡))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062  βˆƒwrex 3071   class class class wbr 5149  βŸΆwf 6540  β€˜cfv 6544  (class class class)co 7409  β„‚cc 11108   < clt 11248   βˆ’ cmin 11444  β„+crp 12974  abscabs 15181   β„‹chba 30172  normβ„Žcno 30176   βˆ’β„Ž cmv 30178  ContFnccnfn 30206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-hilex 30252
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-map 8822  df-cnfn 31100
This theorem is referenced by:  nmcfnexi  31304
  Copyright terms: Public domain W3C validator