HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cnfnc Structured version   Visualization version   GIF version

Theorem cnfnc 29710
Description: Basic continuity property of a continuous functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
cnfnc ((𝑇 ∈ ContFn ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℝ+) → ∃𝑥 ∈ ℝ+𝑦 ∈ ℋ ((norm‘(𝑦 𝐴)) < 𝑥 → (abs‘((𝑇𝑦) − (𝑇𝐴))) < 𝐵))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝑇,𝑦

Proof of Theorem cnfnc
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elcnfn 29662 . . . 4 (𝑇 ∈ ContFn ↔ (𝑇: ℋ⟶ℂ ∧ ∀𝑧 ∈ ℋ ∀𝑤 ∈ ℝ+𝑥 ∈ ℝ+𝑦 ∈ ℋ ((norm‘(𝑦 𝑧)) < 𝑥 → (abs‘((𝑇𝑦) − (𝑇𝑧))) < 𝑤)))
21simprbi 499 . . 3 (𝑇 ∈ ContFn → ∀𝑧 ∈ ℋ ∀𝑤 ∈ ℝ+𝑥 ∈ ℝ+𝑦 ∈ ℋ ((norm‘(𝑦 𝑧)) < 𝑥 → (abs‘((𝑇𝑦) − (𝑇𝑧))) < 𝑤))
3 oveq2 7167 . . . . . . . 8 (𝑧 = 𝐴 → (𝑦 𝑧) = (𝑦 𝐴))
43fveq2d 6677 . . . . . . 7 (𝑧 = 𝐴 → (norm‘(𝑦 𝑧)) = (norm‘(𝑦 𝐴)))
54breq1d 5079 . . . . . 6 (𝑧 = 𝐴 → ((norm‘(𝑦 𝑧)) < 𝑥 ↔ (norm‘(𝑦 𝐴)) < 𝑥))
6 fveq2 6673 . . . . . . . . 9 (𝑧 = 𝐴 → (𝑇𝑧) = (𝑇𝐴))
76oveq2d 7175 . . . . . . . 8 (𝑧 = 𝐴 → ((𝑇𝑦) − (𝑇𝑧)) = ((𝑇𝑦) − (𝑇𝐴)))
87fveq2d 6677 . . . . . . 7 (𝑧 = 𝐴 → (abs‘((𝑇𝑦) − (𝑇𝑧))) = (abs‘((𝑇𝑦) − (𝑇𝐴))))
98breq1d 5079 . . . . . 6 (𝑧 = 𝐴 → ((abs‘((𝑇𝑦) − (𝑇𝑧))) < 𝑤 ↔ (abs‘((𝑇𝑦) − (𝑇𝐴))) < 𝑤))
105, 9imbi12d 347 . . . . 5 (𝑧 = 𝐴 → (((norm‘(𝑦 𝑧)) < 𝑥 → (abs‘((𝑇𝑦) − (𝑇𝑧))) < 𝑤) ↔ ((norm‘(𝑦 𝐴)) < 𝑥 → (abs‘((𝑇𝑦) − (𝑇𝐴))) < 𝑤)))
1110rexralbidv 3304 . . . 4 (𝑧 = 𝐴 → (∃𝑥 ∈ ℝ+𝑦 ∈ ℋ ((norm‘(𝑦 𝑧)) < 𝑥 → (abs‘((𝑇𝑦) − (𝑇𝑧))) < 𝑤) ↔ ∃𝑥 ∈ ℝ+𝑦 ∈ ℋ ((norm‘(𝑦 𝐴)) < 𝑥 → (abs‘((𝑇𝑦) − (𝑇𝐴))) < 𝑤)))
12 breq2 5073 . . . . . 6 (𝑤 = 𝐵 → ((abs‘((𝑇𝑦) − (𝑇𝐴))) < 𝑤 ↔ (abs‘((𝑇𝑦) − (𝑇𝐴))) < 𝐵))
1312imbi2d 343 . . . . 5 (𝑤 = 𝐵 → (((norm‘(𝑦 𝐴)) < 𝑥 → (abs‘((𝑇𝑦) − (𝑇𝐴))) < 𝑤) ↔ ((norm‘(𝑦 𝐴)) < 𝑥 → (abs‘((𝑇𝑦) − (𝑇𝐴))) < 𝐵)))
1413rexralbidv 3304 . . . 4 (𝑤 = 𝐵 → (∃𝑥 ∈ ℝ+𝑦 ∈ ℋ ((norm‘(𝑦 𝐴)) < 𝑥 → (abs‘((𝑇𝑦) − (𝑇𝐴))) < 𝑤) ↔ ∃𝑥 ∈ ℝ+𝑦 ∈ ℋ ((norm‘(𝑦 𝐴)) < 𝑥 → (abs‘((𝑇𝑦) − (𝑇𝐴))) < 𝐵)))
1511, 14rspc2v 3636 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℝ+) → (∀𝑧 ∈ ℋ ∀𝑤 ∈ ℝ+𝑥 ∈ ℝ+𝑦 ∈ ℋ ((norm‘(𝑦 𝑧)) < 𝑥 → (abs‘((𝑇𝑦) − (𝑇𝑧))) < 𝑤) → ∃𝑥 ∈ ℝ+𝑦 ∈ ℋ ((norm‘(𝑦 𝐴)) < 𝑥 → (abs‘((𝑇𝑦) − (𝑇𝐴))) < 𝐵)))
162, 15syl5com 31 . 2 (𝑇 ∈ ContFn → ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℝ+) → ∃𝑥 ∈ ℝ+𝑦 ∈ ℋ ((norm‘(𝑦 𝐴)) < 𝑥 → (abs‘((𝑇𝑦) − (𝑇𝐴))) < 𝐵)))
17163impib 1112 1 ((𝑇 ∈ ContFn ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℝ+) → ∃𝑥 ∈ ℝ+𝑦 ∈ ℋ ((norm‘(𝑦 𝐴)) < 𝑥 → (abs‘((𝑇𝑦) − (𝑇𝐴))) < 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1536  wcel 2113  wral 3141  wrex 3142   class class class wbr 5069  wf 6354  cfv 6358  (class class class)co 7159  cc 10538   < clt 10678  cmin 10873  +crp 12392  abscabs 14596  chba 28699  normcno 28703   cmv 28705  ContFnccnfn 28733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-hilex 28779
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-fv 6366  df-ov 7162  df-oprab 7163  df-mpo 7164  df-map 8411  df-cnfn 29627
This theorem is referenced by:  nmcfnexi  29831
  Copyright terms: Public domain W3C validator