MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrnust Structured version   Visualization version   GIF version

Theorem elrnust 22356
Description: First direction for ustbas 22359. (Contributed by Thierry Arnoux, 16-Nov-2017.)
Assertion
Ref Expression
elrnust (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ran UnifOn)

Proof of Theorem elrnust
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elfvdm 6443 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ∈ dom UnifOn)
2 fveq2 6411 . . . . 5 (𝑥 = 𝑋 → (UnifOn‘𝑥) = (UnifOn‘𝑋))
32eleq2d 2864 . . . 4 (𝑥 = 𝑋 → (𝑈 ∈ (UnifOn‘𝑥) ↔ 𝑈 ∈ (UnifOn‘𝑋)))
43rspcev 3497 . . 3 ((𝑋 ∈ dom UnifOn ∧ 𝑈 ∈ (UnifOn‘𝑋)) → ∃𝑥 ∈ dom UnifOn𝑈 ∈ (UnifOn‘𝑥))
51, 4mpancom 680 . 2 (𝑈 ∈ (UnifOn‘𝑋) → ∃𝑥 ∈ dom UnifOn𝑈 ∈ (UnifOn‘𝑥))
6 ustfn 22333 . . 3 UnifOn Fn V
7 fnfun 6199 . . 3 (UnifOn Fn V → Fun UnifOn)
8 elunirn 6737 . . 3 (Fun UnifOn → (𝑈 ran UnifOn ↔ ∃𝑥 ∈ dom UnifOn𝑈 ∈ (UnifOn‘𝑥)))
96, 7, 8mp2b 10 . 2 (𝑈 ran UnifOn ↔ ∃𝑥 ∈ dom UnifOn𝑈 ∈ (UnifOn‘𝑥))
105, 9sylibr 226 1 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ran UnifOn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198   = wceq 1653  wcel 2157  wrex 3090  Vcvv 3385   cuni 4628  dom cdm 5312  ran crn 5313  Fun wfun 6095   Fn wfn 6096  cfv 6101  UnifOncust 22331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-sbc 3634  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-iota 6064  df-fun 6103  df-fn 6104  df-fv 6109  df-ust 22332
This theorem is referenced by:  ustbas  22359  utopval  22364  tusval  22398  ucnval  22409  iscfilu  22420
  Copyright terms: Public domain W3C validator