MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrnust Structured version   Visualization version   GIF version

Theorem elrnust 22918
Description: First direction for ustbas 22921. (Contributed by Thierry Arnoux, 16-Nov-2017.)
Assertion
Ref Expression
elrnust (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ran UnifOn)

Proof of Theorem elrnust
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elfvdm 6691 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ∈ dom UnifOn)
2 fveq2 6659 . . . . 5 (𝑥 = 𝑋 → (UnifOn‘𝑥) = (UnifOn‘𝑋))
32eleq2d 2838 . . . 4 (𝑥 = 𝑋 → (𝑈 ∈ (UnifOn‘𝑥) ↔ 𝑈 ∈ (UnifOn‘𝑋)))
43rspcev 3542 . . 3 ((𝑋 ∈ dom UnifOn ∧ 𝑈 ∈ (UnifOn‘𝑋)) → ∃𝑥 ∈ dom UnifOn𝑈 ∈ (UnifOn‘𝑥))
51, 4mpancom 688 . 2 (𝑈 ∈ (UnifOn‘𝑋) → ∃𝑥 ∈ dom UnifOn𝑈 ∈ (UnifOn‘𝑥))
6 ustfn 22895 . . 3 UnifOn Fn V
7 fnfun 6435 . . 3 (UnifOn Fn V → Fun UnifOn)
8 elunirn 7003 . . 3 (Fun UnifOn → (𝑈 ran UnifOn ↔ ∃𝑥 ∈ dom UnifOn𝑈 ∈ (UnifOn‘𝑥)))
96, 7, 8mp2b 10 . 2 (𝑈 ran UnifOn ↔ ∃𝑥 ∈ dom UnifOn𝑈 ∈ (UnifOn‘𝑥))
105, 9sylibr 237 1 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ran UnifOn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1539  wcel 2112  wrex 3072  Vcvv 3410   cuni 4799  dom cdm 5525  ran crn 5526  Fun wfun 6330   Fn wfn 6331  cfv 6336  UnifOncust 22893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-rab 3080  df-v 3412  df-sbc 3698  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-op 4530  df-uni 4800  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5431  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-iota 6295  df-fun 6338  df-fn 6339  df-fv 6344  df-ust 22894
This theorem is referenced by:  ustbas  22921  utopval  22926  tusval  22960  ucnval  22971  iscfilu  22982
  Copyright terms: Public domain W3C validator