Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elrnust | Structured version Visualization version GIF version |
Description: First direction for ustbas 23360. (Contributed by Thierry Arnoux, 16-Nov-2017.) |
Ref | Expression |
---|---|
elrnust | ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ∈ ∪ ran UnifOn) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6800 | . . 3 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ∈ dom UnifOn) | |
2 | fveq2 6768 | . . . . 5 ⊢ (𝑥 = 𝑋 → (UnifOn‘𝑥) = (UnifOn‘𝑋)) | |
3 | 2 | eleq2d 2825 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑈 ∈ (UnifOn‘𝑥) ↔ 𝑈 ∈ (UnifOn‘𝑋))) |
4 | 3 | rspcev 3560 | . . 3 ⊢ ((𝑋 ∈ dom UnifOn ∧ 𝑈 ∈ (UnifOn‘𝑋)) → ∃𝑥 ∈ dom UnifOn𝑈 ∈ (UnifOn‘𝑥)) |
5 | 1, 4 | mpancom 684 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∃𝑥 ∈ dom UnifOn𝑈 ∈ (UnifOn‘𝑥)) |
6 | ustfn 23334 | . . 3 ⊢ UnifOn Fn V | |
7 | fnfun 6529 | . . 3 ⊢ (UnifOn Fn V → Fun UnifOn) | |
8 | elunirn 7118 | . . 3 ⊢ (Fun UnifOn → (𝑈 ∈ ∪ ran UnifOn ↔ ∃𝑥 ∈ dom UnifOn𝑈 ∈ (UnifOn‘𝑥))) | |
9 | 6, 7, 8 | mp2b 10 | . 2 ⊢ (𝑈 ∈ ∪ ran UnifOn ↔ ∃𝑥 ∈ dom UnifOn𝑈 ∈ (UnifOn‘𝑥)) |
10 | 5, 9 | sylibr 233 | 1 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ∈ ∪ ran UnifOn) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2109 ∃wrex 3066 Vcvv 3430 ∪ cuni 4844 dom cdm 5588 ran crn 5589 Fun wfun 6424 Fn wfn 6425 ‘cfv 6430 UnifOncust 23332 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-iota 6388 df-fun 6432 df-fn 6433 df-fv 6438 df-ust 23333 |
This theorem is referenced by: ustbas 23360 utopval 23365 tusval 23398 ucnval 23410 iscfilu 23421 |
Copyright terms: Public domain | W3C validator |