Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elrnust | Structured version Visualization version GIF version |
Description: First direction for ustbas 22921. (Contributed by Thierry Arnoux, 16-Nov-2017.) |
Ref | Expression |
---|---|
elrnust | ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ∈ ∪ ran UnifOn) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6691 | . . 3 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ∈ dom UnifOn) | |
2 | fveq2 6659 | . . . . 5 ⊢ (𝑥 = 𝑋 → (UnifOn‘𝑥) = (UnifOn‘𝑋)) | |
3 | 2 | eleq2d 2838 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑈 ∈ (UnifOn‘𝑥) ↔ 𝑈 ∈ (UnifOn‘𝑋))) |
4 | 3 | rspcev 3542 | . . 3 ⊢ ((𝑋 ∈ dom UnifOn ∧ 𝑈 ∈ (UnifOn‘𝑋)) → ∃𝑥 ∈ dom UnifOn𝑈 ∈ (UnifOn‘𝑥)) |
5 | 1, 4 | mpancom 688 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∃𝑥 ∈ dom UnifOn𝑈 ∈ (UnifOn‘𝑥)) |
6 | ustfn 22895 | . . 3 ⊢ UnifOn Fn V | |
7 | fnfun 6435 | . . 3 ⊢ (UnifOn Fn V → Fun UnifOn) | |
8 | elunirn 7003 | . . 3 ⊢ (Fun UnifOn → (𝑈 ∈ ∪ ran UnifOn ↔ ∃𝑥 ∈ dom UnifOn𝑈 ∈ (UnifOn‘𝑥))) | |
9 | 6, 7, 8 | mp2b 10 | . 2 ⊢ (𝑈 ∈ ∪ ran UnifOn ↔ ∃𝑥 ∈ dom UnifOn𝑈 ∈ (UnifOn‘𝑥)) |
10 | 5, 9 | sylibr 237 | 1 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ∈ ∪ ran UnifOn) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1539 ∈ wcel 2112 ∃wrex 3072 Vcvv 3410 ∪ cuni 4799 dom cdm 5525 ran crn 5526 Fun wfun 6330 Fn wfn 6331 ‘cfv 6336 UnifOncust 22893 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-sbc 3698 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-br 5034 df-opab 5096 df-mpt 5114 df-id 5431 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-iota 6295 df-fun 6338 df-fn 6339 df-fv 6344 df-ust 22894 |
This theorem is referenced by: ustbas 22921 utopval 22926 tusval 22960 ucnval 22971 iscfilu 22982 |
Copyright terms: Public domain | W3C validator |