| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elsuppfnd | Structured version Visualization version GIF version | ||
| Description: Deduce membership in the support of a function. (Contributed by Thierry Arnoux, 5-Oct-2025.) |
| Ref | Expression |
|---|---|
| elsuppfnd.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| elsuppfnd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| elsuppfnd.3 | ⊢ (𝜑 → 𝑍 ∈ 𝑊) |
| elsuppfnd.4 | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| elsuppfnd.5 | ⊢ (𝜑 → (𝐹‘𝑋) ≠ 𝑍) |
| Ref | Expression |
|---|---|
| elsuppfnd | ⊢ (𝜑 → 𝑋 ∈ (𝐹 supp 𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsuppfnd.1 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 2 | elsuppfnd.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | elsuppfnd.3 | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝑊) | |
| 4 | elsuppfnd.4 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 5 | elsuppfnd.5 | . 2 ⊢ (𝜑 → (𝐹‘𝑋) ≠ 𝑍) | |
| 6 | elsuppfn 8167 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) ≠ 𝑍))) | |
| 7 | 6 | biimpar 477 | . 2 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ (𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) ≠ 𝑍)) → 𝑋 ∈ (𝐹 supp 𝑍)) |
| 8 | 1, 2, 3, 4, 5, 7 | syl32anc 1380 | 1 ⊢ (𝜑 → 𝑋 ∈ (𝐹 supp 𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2108 ≠ wne 2932 Fn wfn 6525 ‘cfv 6530 (class class class)co 7403 supp csupp 8157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-supp 8158 |
| This theorem is referenced by: elrgspnlem2 33184 |
| Copyright terms: Public domain | W3C validator |