MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elutop Structured version   Visualization version   GIF version

Theorem elutop 24187
Description: Open sets in the topology induced by an uniform structure 𝑈 on 𝑋 (Contributed by Thierry Arnoux, 30-Nov-2017.)
Assertion
Ref Expression
elutop (𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ∈ (unifTop‘𝑈) ↔ (𝐴𝑋 ∧ ∀𝑥𝐴𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴)))
Distinct variable groups:   𝑥,𝑣,𝐴   𝑣,𝑈,𝑥   𝑥,𝑋
Allowed substitution hint:   𝑋(𝑣)

Proof of Theorem elutop
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 utopval 24186 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑎𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎})
21eleq2d 2819 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ∈ (unifTop‘𝑈) ↔ 𝐴 ∈ {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑎𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎}))
3 sseq2 3990 . . . . . 6 (𝑎 = 𝐴 → ((𝑣 “ {𝑥}) ⊆ 𝑎 ↔ (𝑣 “ {𝑥}) ⊆ 𝐴))
43rexbidv 3166 . . . . 5 (𝑎 = 𝐴 → (∃𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎 ↔ ∃𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴))
54raleqbi1dv 3321 . . . 4 (𝑎 = 𝐴 → (∀𝑥𝑎𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎 ↔ ∀𝑥𝐴𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴))
65elrab 3675 . . 3 (𝐴 ∈ {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑎𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎} ↔ (𝐴 ∈ 𝒫 𝑋 ∧ ∀𝑥𝐴𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴))
72, 6bitrdi 287 . 2 (𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ∈ (unifTop‘𝑈) ↔ (𝐴 ∈ 𝒫 𝑋 ∧ ∀𝑥𝐴𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴)))
8 elex 3484 . . . . 5 (𝐴 ∈ 𝒫 𝑋𝐴 ∈ V)
98a1i 11 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ∈ 𝒫 𝑋𝐴 ∈ V))
10 elfvex 6923 . . . . . . 7 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ∈ V)
1110adantr 480 . . . . . 6 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) → 𝑋 ∈ V)
12 simpr 484 . . . . . 6 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) → 𝐴𝑋)
1311, 12ssexd 5304 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 ∈ V)
1413ex 412 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → (𝐴𝑋𝐴 ∈ V))
15 elpwg 4583 . . . . 5 (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝑋𝐴𝑋))
1615a1i 11 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝑋𝐴𝑋)))
179, 14, 16pm5.21ndd 379 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ∈ 𝒫 𝑋𝐴𝑋))
1817anbi1d 631 . 2 (𝑈 ∈ (UnifOn‘𝑋) → ((𝐴 ∈ 𝒫 𝑋 ∧ ∀𝑥𝐴𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴) ↔ (𝐴𝑋 ∧ ∀𝑥𝐴𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴)))
197, 18bitrd 279 1 (𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ∈ (unifTop‘𝑈) ↔ (𝐴𝑋 ∧ ∀𝑥𝐴𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wral 3050  wrex 3059  {crab 3419  Vcvv 3463  wss 3931  𝒫 cpw 4580  {csn 4606  cima 5668  cfv 6540  UnifOncust 24153  unifTopcutop 24184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7736
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-iota 6493  df-fun 6542  df-fv 6548  df-ust 24154  df-utop 24185
This theorem is referenced by:  utoptop  24188  utopbas  24189  restutop  24191  restutopopn  24192  ucncn  24238
  Copyright terms: Public domain W3C validator