Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elutop | Structured version Visualization version GIF version |
Description: Open sets in the topology induced by an uniform structure 𝑈 on 𝑋 (Contributed by Thierry Arnoux, 30-Nov-2017.) |
Ref | Expression |
---|---|
elutop | ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ∈ (unifTop‘𝑈) ↔ (𝐴 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | utopval 23489 | . . . 4 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥 ∈ 𝑎 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎}) | |
2 | 1 | eleq2d 2823 | . . 3 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ∈ (unifTop‘𝑈) ↔ 𝐴 ∈ {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥 ∈ 𝑎 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎})) |
3 | sseq2 3961 | . . . . . 6 ⊢ (𝑎 = 𝐴 → ((𝑣 “ {𝑥}) ⊆ 𝑎 ↔ (𝑣 “ {𝑥}) ⊆ 𝐴)) | |
4 | 3 | rexbidv 3172 | . . . . 5 ⊢ (𝑎 = 𝐴 → (∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎 ↔ ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴)) |
5 | 4 | raleqbi1dv 3304 | . . . 4 ⊢ (𝑎 = 𝐴 → (∀𝑥 ∈ 𝑎 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎 ↔ ∀𝑥 ∈ 𝐴 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴)) |
6 | 5 | elrab 3637 | . . 3 ⊢ (𝐴 ∈ {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥 ∈ 𝑎 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎} ↔ (𝐴 ∈ 𝒫 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴)) |
7 | 2, 6 | bitrdi 287 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ∈ (unifTop‘𝑈) ↔ (𝐴 ∈ 𝒫 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴))) |
8 | elex 3460 | . . . . 5 ⊢ (𝐴 ∈ 𝒫 𝑋 → 𝐴 ∈ V) | |
9 | 8 | a1i 11 | . . . 4 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ∈ 𝒫 𝑋 → 𝐴 ∈ V)) |
10 | elfvex 6867 | . . . . . . 7 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ∈ V) | |
11 | 10 | adantr 482 | . . . . . 6 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝑋 ∈ V) |
12 | simpr 486 | . . . . . 6 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ⊆ 𝑋) | |
13 | 11, 12 | ssexd 5272 | . . . . 5 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ∈ V) |
14 | 13 | ex 414 | . . . 4 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ⊆ 𝑋 → 𝐴 ∈ V)) |
15 | elpwg 4554 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) | |
16 | 15 | a1i 11 | . . . 4 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋))) |
17 | 9, 14, 16 | pm5.21ndd 381 | . . 3 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) |
18 | 17 | anbi1d 631 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ((𝐴 ∈ 𝒫 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴) ↔ (𝐴 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴))) |
19 | 7, 18 | bitrd 279 | 1 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ∈ (unifTop‘𝑈) ↔ (𝐴 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1541 ∈ wcel 2106 ∀wral 3062 ∃wrex 3071 {crab 3404 Vcvv 3442 ⊆ wss 3901 𝒫 cpw 4551 {csn 4577 “ cima 5627 ‘cfv 6483 UnifOncust 23456 unifTopcutop 23487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-br 5097 df-opab 5159 df-mpt 5180 df-id 5522 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-iota 6435 df-fun 6485 df-fv 6491 df-ust 23457 df-utop 23488 |
This theorem is referenced by: utoptop 23491 utopbas 23492 restutop 23494 restutopopn 23495 ucncn 23542 |
Copyright terms: Public domain | W3C validator |