MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elutop Structured version   Visualization version   GIF version

Theorem elutop 24121
Description: Open sets in the topology induced by an uniform structure 𝑈 on 𝑋 (Contributed by Thierry Arnoux, 30-Nov-2017.)
Assertion
Ref Expression
elutop (𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ∈ (unifTop‘𝑈) ↔ (𝐴𝑋 ∧ ∀𝑥𝐴𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴)))
Distinct variable groups:   𝑥,𝑣,𝐴   𝑣,𝑈,𝑥   𝑥,𝑋
Allowed substitution hint:   𝑋(𝑣)

Proof of Theorem elutop
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 utopval 24120 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑎𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎})
21eleq2d 2814 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ∈ (unifTop‘𝑈) ↔ 𝐴 ∈ {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑎𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎}))
3 sseq2 3973 . . . . . 6 (𝑎 = 𝐴 → ((𝑣 “ {𝑥}) ⊆ 𝑎 ↔ (𝑣 “ {𝑥}) ⊆ 𝐴))
43rexbidv 3157 . . . . 5 (𝑎 = 𝐴 → (∃𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎 ↔ ∃𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴))
54raleqbi1dv 3311 . . . 4 (𝑎 = 𝐴 → (∀𝑥𝑎𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎 ↔ ∀𝑥𝐴𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴))
65elrab 3659 . . 3 (𝐴 ∈ {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑎𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎} ↔ (𝐴 ∈ 𝒫 𝑋 ∧ ∀𝑥𝐴𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴))
72, 6bitrdi 287 . 2 (𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ∈ (unifTop‘𝑈) ↔ (𝐴 ∈ 𝒫 𝑋 ∧ ∀𝑥𝐴𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴)))
8 elex 3468 . . . . 5 (𝐴 ∈ 𝒫 𝑋𝐴 ∈ V)
98a1i 11 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ∈ 𝒫 𝑋𝐴 ∈ V))
10 elfvex 6896 . . . . . . 7 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ∈ V)
1110adantr 480 . . . . . 6 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) → 𝑋 ∈ V)
12 simpr 484 . . . . . 6 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) → 𝐴𝑋)
1311, 12ssexd 5279 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 ∈ V)
1413ex 412 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → (𝐴𝑋𝐴 ∈ V))
15 elpwg 4566 . . . . 5 (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝑋𝐴𝑋))
1615a1i 11 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝑋𝐴𝑋)))
179, 14, 16pm5.21ndd 379 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ∈ 𝒫 𝑋𝐴𝑋))
1817anbi1d 631 . 2 (𝑈 ∈ (UnifOn‘𝑋) → ((𝐴 ∈ 𝒫 𝑋 ∧ ∀𝑥𝐴𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴) ↔ (𝐴𝑋 ∧ ∀𝑥𝐴𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴)))
197, 18bitrd 279 1 (𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ∈ (unifTop‘𝑈) ↔ (𝐴𝑋 ∧ ∀𝑥𝐴𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3405  Vcvv 3447  wss 3914  𝒫 cpw 4563  {csn 4589  cima 5641  cfv 6511  UnifOncust 24087  unifTopcutop 24118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-iota 6464  df-fun 6513  df-fv 6519  df-ust 24088  df-utop 24119
This theorem is referenced by:  utoptop  24122  utopbas  24123  restutop  24125  restutopopn  24126  ucncn  24172
  Copyright terms: Public domain W3C validator