| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elutop | Structured version Visualization version GIF version | ||
| Description: Open sets in the topology induced by an uniform structure 𝑈 on 𝑋 (Contributed by Thierry Arnoux, 30-Nov-2017.) |
| Ref | Expression |
|---|---|
| elutop | ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ∈ (unifTop‘𝑈) ↔ (𝐴 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | utopval 24153 | . . . 4 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥 ∈ 𝑎 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎}) | |
| 2 | 1 | eleq2d 2814 | . . 3 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ∈ (unifTop‘𝑈) ↔ 𝐴 ∈ {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥 ∈ 𝑎 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎})) |
| 3 | sseq2 3970 | . . . . . 6 ⊢ (𝑎 = 𝐴 → ((𝑣 “ {𝑥}) ⊆ 𝑎 ↔ (𝑣 “ {𝑥}) ⊆ 𝐴)) | |
| 4 | 3 | rexbidv 3157 | . . . . 5 ⊢ (𝑎 = 𝐴 → (∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎 ↔ ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴)) |
| 5 | 4 | raleqbi1dv 3308 | . . . 4 ⊢ (𝑎 = 𝐴 → (∀𝑥 ∈ 𝑎 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎 ↔ ∀𝑥 ∈ 𝐴 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴)) |
| 6 | 5 | elrab 3656 | . . 3 ⊢ (𝐴 ∈ {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥 ∈ 𝑎 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎} ↔ (𝐴 ∈ 𝒫 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴)) |
| 7 | 2, 6 | bitrdi 287 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ∈ (unifTop‘𝑈) ↔ (𝐴 ∈ 𝒫 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴))) |
| 8 | elex 3465 | . . . . 5 ⊢ (𝐴 ∈ 𝒫 𝑋 → 𝐴 ∈ V) | |
| 9 | 8 | a1i 11 | . . . 4 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ∈ 𝒫 𝑋 → 𝐴 ∈ V)) |
| 10 | elfvex 6878 | . . . . . . 7 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ∈ V) | |
| 11 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝑋 ∈ V) |
| 12 | simpr 484 | . . . . . 6 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ⊆ 𝑋) | |
| 13 | 11, 12 | ssexd 5274 | . . . . 5 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ∈ V) |
| 14 | 13 | ex 412 | . . . 4 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ⊆ 𝑋 → 𝐴 ∈ V)) |
| 15 | elpwg 4562 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) | |
| 16 | 15 | a1i 11 | . . . 4 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋))) |
| 17 | 9, 14, 16 | pm5.21ndd 379 | . . 3 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) |
| 18 | 17 | anbi1d 631 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ((𝐴 ∈ 𝒫 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴) ↔ (𝐴 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴))) |
| 19 | 7, 18 | bitrd 279 | 1 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ∈ (unifTop‘𝑈) ↔ (𝐴 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 {crab 3402 Vcvv 3444 ⊆ wss 3911 𝒫 cpw 4559 {csn 4585 “ cima 5634 ‘cfv 6499 UnifOncust 24120 unifTopcutop 24151 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-iota 6452 df-fun 6501 df-fv 6507 df-ust 24121 df-utop 24152 |
| This theorem is referenced by: utoptop 24155 utopbas 24156 restutop 24158 restutopopn 24159 ucncn 24205 |
| Copyright terms: Public domain | W3C validator |