![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elutop | Structured version Visualization version GIF version |
Description: Open sets in the topology induced by an uniform structure 𝑈 on 𝑋 (Contributed by Thierry Arnoux, 30-Nov-2017.) |
Ref | Expression |
---|---|
elutop | ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ∈ (unifTop‘𝑈) ↔ (𝐴 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | utopval 24266 | . . . 4 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥 ∈ 𝑎 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎}) | |
2 | 1 | eleq2d 2827 | . . 3 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ∈ (unifTop‘𝑈) ↔ 𝐴 ∈ {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥 ∈ 𝑎 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎})) |
3 | sseq2 4025 | . . . . . 6 ⊢ (𝑎 = 𝐴 → ((𝑣 “ {𝑥}) ⊆ 𝑎 ↔ (𝑣 “ {𝑥}) ⊆ 𝐴)) | |
4 | 3 | rexbidv 3179 | . . . . 5 ⊢ (𝑎 = 𝐴 → (∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎 ↔ ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴)) |
5 | 4 | raleqbi1dv 3338 | . . . 4 ⊢ (𝑎 = 𝐴 → (∀𝑥 ∈ 𝑎 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎 ↔ ∀𝑥 ∈ 𝐴 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴)) |
6 | 5 | elrab 3698 | . . 3 ⊢ (𝐴 ∈ {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥 ∈ 𝑎 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎} ↔ (𝐴 ∈ 𝒫 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴)) |
7 | 2, 6 | bitrdi 287 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ∈ (unifTop‘𝑈) ↔ (𝐴 ∈ 𝒫 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴))) |
8 | elex 3502 | . . . . 5 ⊢ (𝐴 ∈ 𝒫 𝑋 → 𝐴 ∈ V) | |
9 | 8 | a1i 11 | . . . 4 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ∈ 𝒫 𝑋 → 𝐴 ∈ V)) |
10 | elfvex 6952 | . . . . . . 7 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ∈ V) | |
11 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝑋 ∈ V) |
12 | simpr 484 | . . . . . 6 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ⊆ 𝑋) | |
13 | 11, 12 | ssexd 5333 | . . . . 5 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ∈ V) |
14 | 13 | ex 412 | . . . 4 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ⊆ 𝑋 → 𝐴 ∈ V)) |
15 | elpwg 4611 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) | |
16 | 15 | a1i 11 | . . . 4 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋))) |
17 | 9, 14, 16 | pm5.21ndd 379 | . . 3 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) |
18 | 17 | anbi1d 631 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ((𝐴 ∈ 𝒫 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴) ↔ (𝐴 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴))) |
19 | 7, 18 | bitrd 279 | 1 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ∈ (unifTop‘𝑈) ↔ (𝐴 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3061 ∃wrex 3070 {crab 3436 Vcvv 3481 ⊆ wss 3966 𝒫 cpw 4608 {csn 4634 “ cima 5696 ‘cfv 6569 UnifOncust 24233 unifTopcutop 24264 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-iota 6522 df-fun 6571 df-fv 6577 df-ust 24234 df-utop 24265 |
This theorem is referenced by: utoptop 24268 utopbas 24269 restutop 24271 restutopopn 24272 ucncn 24319 |
Copyright terms: Public domain | W3C validator |