MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elutop Structured version   Visualization version   GIF version

Theorem elutop 23293
Description: Open sets in the topology induced by an uniform structure 𝑈 on 𝑋 (Contributed by Thierry Arnoux, 30-Nov-2017.)
Assertion
Ref Expression
elutop (𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ∈ (unifTop‘𝑈) ↔ (𝐴𝑋 ∧ ∀𝑥𝐴𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴)))
Distinct variable groups:   𝑥,𝑣,𝐴   𝑣,𝑈,𝑥   𝑥,𝑋
Allowed substitution hint:   𝑋(𝑣)

Proof of Theorem elutop
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 utopval 23292 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑎𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎})
21eleq2d 2824 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ∈ (unifTop‘𝑈) ↔ 𝐴 ∈ {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑎𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎}))
3 sseq2 3943 . . . . . 6 (𝑎 = 𝐴 → ((𝑣 “ {𝑥}) ⊆ 𝑎 ↔ (𝑣 “ {𝑥}) ⊆ 𝐴))
43rexbidv 3225 . . . . 5 (𝑎 = 𝐴 → (∃𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎 ↔ ∃𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴))
54raleqbi1dv 3331 . . . 4 (𝑎 = 𝐴 → (∀𝑥𝑎𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎 ↔ ∀𝑥𝐴𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴))
65elrab 3617 . . 3 (𝐴 ∈ {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑎𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎} ↔ (𝐴 ∈ 𝒫 𝑋 ∧ ∀𝑥𝐴𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴))
72, 6bitrdi 286 . 2 (𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ∈ (unifTop‘𝑈) ↔ (𝐴 ∈ 𝒫 𝑋 ∧ ∀𝑥𝐴𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴)))
8 elex 3440 . . . . 5 (𝐴 ∈ 𝒫 𝑋𝐴 ∈ V)
98a1i 11 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ∈ 𝒫 𝑋𝐴 ∈ V))
10 elfvex 6789 . . . . . . 7 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ∈ V)
1110adantr 480 . . . . . 6 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) → 𝑋 ∈ V)
12 simpr 484 . . . . . 6 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) → 𝐴𝑋)
1311, 12ssexd 5243 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 ∈ V)
1413ex 412 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → (𝐴𝑋𝐴 ∈ V))
15 elpwg 4533 . . . . 5 (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝑋𝐴𝑋))
1615a1i 11 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝑋𝐴𝑋)))
179, 14, 16pm5.21ndd 380 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ∈ 𝒫 𝑋𝐴𝑋))
1817anbi1d 629 . 2 (𝑈 ∈ (UnifOn‘𝑋) → ((𝐴 ∈ 𝒫 𝑋 ∧ ∀𝑥𝐴𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴) ↔ (𝐴𝑋 ∧ ∀𝑥𝐴𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴)))
197, 18bitrd 278 1 (𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ∈ (unifTop‘𝑈) ↔ (𝐴𝑋 ∧ ∀𝑥𝐴𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  wss 3883  𝒫 cpw 4530  {csn 4558  cima 5583  cfv 6418  UnifOncust 23259  unifTopcutop 23290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426  df-ust 23260  df-utop 23291
This theorem is referenced by:  utoptop  23294  utopbas  23295  restutop  23297  restutopopn  23298  ucncn  23345
  Copyright terms: Public domain W3C validator