MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enreceq Structured version   Visualization version   GIF version

Theorem enreceq 10949
Description: Equivalence class equality of positive fractions in terms of positive integers. (Contributed by NM, 29-Nov-1995.) (New usage is discouraged.)
Assertion
Ref Expression
enreceq (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ([⟨𝐴, 𝐵⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ↔ (𝐴 +P 𝐷) = (𝐵 +P 𝐶)))

Proof of Theorem enreceq
StepHypRef Expression
1 enrer 10946 . . . 4 ~R Er (P × P)
21a1i 11 . . 3 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ~R Er (P × P))
3 opelxpi 5651 . . . 4 ((𝐴P𝐵P) → ⟨𝐴, 𝐵⟩ ∈ (P × P))
43adantr 480 . . 3 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ⟨𝐴, 𝐵⟩ ∈ (P × P))
52, 4erth 8671 . 2 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → (⟨𝐴, 𝐵⟩ ~R𝐶, 𝐷⟩ ↔ [⟨𝐴, 𝐵⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ))
6 enrbreq 10948 . 2 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → (⟨𝐴, 𝐵⟩ ~R𝐶, 𝐷⟩ ↔ (𝐴 +P 𝐷) = (𝐵 +P 𝐶)))
75, 6bitr3d 281 1 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ([⟨𝐴, 𝐵⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ↔ (𝐴 +P 𝐷) = (𝐵 +P 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110  cop 4580   class class class wbr 5089   × cxp 5612  (class class class)co 7341   Er wer 8614  [cec 8615  Pcnp 10742   +P cpp 10744   ~R cer 10747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-inf2 9526
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-oadd 8384  df-omul 8385  df-er 8617  df-ec 8619  df-ni 10755  df-pli 10756  df-mi 10757  df-lti 10758  df-plpq 10791  df-mpq 10792  df-ltpq 10793  df-enq 10794  df-nq 10795  df-erq 10796  df-plq 10797  df-mq 10798  df-1nq 10799  df-rq 10800  df-ltnq 10801  df-np 10864  df-plp 10866  df-ltp 10868  df-enr 10938
This theorem is referenced by:  ltsrpr  10960  m1p1sr  10975  m1m1sr  10976  ltsosr  10977  0idsr  10980  1idsr  10981  00sr  10982  recexsrlem  10986  map2psrpr  10993
  Copyright terms: Public domain W3C validator