![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqwrd | Structured version Visualization version GIF version |
Description: Two words are equal iff they have the same length and the same symbol at each position. (Contributed by AV, 13-Apr-2018.) |
Ref | Expression |
---|---|
eqwrd | ⊢ ((𝑈 ∈ Word 𝑉 ∧ 𝑊 ∈ Word 𝑉) → (𝑈 = 𝑊 ↔ ((♯‘𝑈) = (♯‘𝑊) ∧ ∀𝑖 ∈ (0..^(♯‘𝑈))(𝑈‘𝑖) = (𝑊‘𝑖)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wrdfn 13614 | . . 3 ⊢ (𝑈 ∈ Word 𝑉 → 𝑈 Fn (0..^(♯‘𝑈))) | |
2 | wrdfn 13614 | . . 3 ⊢ (𝑊 ∈ Word 𝑉 → 𝑊 Fn (0..^(♯‘𝑊))) | |
3 | eqfnfv2 6575 | . . 3 ⊢ ((𝑈 Fn (0..^(♯‘𝑈)) ∧ 𝑊 Fn (0..^(♯‘𝑊))) → (𝑈 = 𝑊 ↔ ((0..^(♯‘𝑈)) = (0..^(♯‘𝑊)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑈))(𝑈‘𝑖) = (𝑊‘𝑖)))) | |
4 | 1, 2, 3 | syl2an 589 | . 2 ⊢ ((𝑈 ∈ Word 𝑉 ∧ 𝑊 ∈ Word 𝑉) → (𝑈 = 𝑊 ↔ ((0..^(♯‘𝑈)) = (0..^(♯‘𝑊)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑈))(𝑈‘𝑖) = (𝑊‘𝑖)))) |
5 | fveq2 6446 | . . . . 5 ⊢ ((0..^(♯‘𝑈)) = (0..^(♯‘𝑊)) → (♯‘(0..^(♯‘𝑈))) = (♯‘(0..^(♯‘𝑊)))) | |
6 | lencl 13621 | . . . . . . 7 ⊢ (𝑈 ∈ Word 𝑉 → (♯‘𝑈) ∈ ℕ0) | |
7 | hashfzo0 13531 | . . . . . . 7 ⊢ ((♯‘𝑈) ∈ ℕ0 → (♯‘(0..^(♯‘𝑈))) = (♯‘𝑈)) | |
8 | 6, 7 | syl 17 | . . . . . 6 ⊢ (𝑈 ∈ Word 𝑉 → (♯‘(0..^(♯‘𝑈))) = (♯‘𝑈)) |
9 | lencl 13621 | . . . . . . 7 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0) | |
10 | hashfzo0 13531 | . . . . . . 7 ⊢ ((♯‘𝑊) ∈ ℕ0 → (♯‘(0..^(♯‘𝑊))) = (♯‘𝑊)) | |
11 | 9, 10 | syl 17 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘(0..^(♯‘𝑊))) = (♯‘𝑊)) |
12 | 8, 11 | eqeqan12d 2793 | . . . . 5 ⊢ ((𝑈 ∈ Word 𝑉 ∧ 𝑊 ∈ Word 𝑉) → ((♯‘(0..^(♯‘𝑈))) = (♯‘(0..^(♯‘𝑊))) ↔ (♯‘𝑈) = (♯‘𝑊))) |
13 | 5, 12 | syl5ib 236 | . . . 4 ⊢ ((𝑈 ∈ Word 𝑉 ∧ 𝑊 ∈ Word 𝑉) → ((0..^(♯‘𝑈)) = (0..^(♯‘𝑊)) → (♯‘𝑈) = (♯‘𝑊))) |
14 | oveq2 6930 | . . . 4 ⊢ ((♯‘𝑈) = (♯‘𝑊) → (0..^(♯‘𝑈)) = (0..^(♯‘𝑊))) | |
15 | 13, 14 | impbid1 217 | . . 3 ⊢ ((𝑈 ∈ Word 𝑉 ∧ 𝑊 ∈ Word 𝑉) → ((0..^(♯‘𝑈)) = (0..^(♯‘𝑊)) ↔ (♯‘𝑈) = (♯‘𝑊))) |
16 | 15 | anbi1d 623 | . 2 ⊢ ((𝑈 ∈ Word 𝑉 ∧ 𝑊 ∈ Word 𝑉) → (((0..^(♯‘𝑈)) = (0..^(♯‘𝑊)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑈))(𝑈‘𝑖) = (𝑊‘𝑖)) ↔ ((♯‘𝑈) = (♯‘𝑊) ∧ ∀𝑖 ∈ (0..^(♯‘𝑈))(𝑈‘𝑖) = (𝑊‘𝑖)))) |
17 | 4, 16 | bitrd 271 | 1 ⊢ ((𝑈 ∈ Word 𝑉 ∧ 𝑊 ∈ Word 𝑉) → (𝑈 = 𝑊 ↔ ((♯‘𝑈) = (♯‘𝑊) ∧ ∀𝑖 ∈ (0..^(♯‘𝑈))(𝑈‘𝑖) = (𝑊‘𝑖)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2106 ∀wral 3089 Fn wfn 6130 ‘cfv 6135 (class class class)co 6922 0cc0 10272 ℕ0cn0 11642 ..^cfzo 12784 ♯chash 13435 Word cword 13599 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-pss 3807 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4672 df-int 4711 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-oadd 7847 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-card 9098 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-nn 11375 df-n0 11643 df-z 11729 df-uz 11993 df-fz 12644 df-fzo 12785 df-hash 13436 df-word 13600 |
This theorem is referenced by: eqs1 13702 swrdeqOLD 13763 swrdspsleq 13769 2swrdeqwrdeqOLD 13773 pfxeq 13805 pfxsuffeqwrdeq 13807 repswpfx 13931 2cshw 13964 pfx2 14098 wwlktovf1 14109 eqwrds3 14113 wlkeq 26981 wwlkseq 27251 |
Copyright terms: Public domain | W3C validator |