MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqwrd Structured version   Visualization version   GIF version

Theorem eqwrd 14513
Description: Two words are equal iff they have the same length and the same symbol at each position. (Contributed by AV, 13-Apr-2018.) (Revised by JJ, 30-Dec-2023.)
Assertion
Ref Expression
eqwrd ((𝑈 ∈ Word 𝑆𝑊 ∈ Word 𝑇) → (𝑈 = 𝑊 ↔ ((♯‘𝑈) = (♯‘𝑊) ∧ ∀𝑖 ∈ (0..^(♯‘𝑈))(𝑈𝑖) = (𝑊𝑖))))
Distinct variable groups:   𝑈,𝑖   𝑖,𝑊
Allowed substitution hints:   𝑆(𝑖)   𝑇(𝑖)

Proof of Theorem eqwrd
StepHypRef Expression
1 wrdfn 14484 . . 3 (𝑈 ∈ Word 𝑆𝑈 Fn (0..^(♯‘𝑈)))
2 wrdfn 14484 . . 3 (𝑊 ∈ Word 𝑇𝑊 Fn (0..^(♯‘𝑊)))
3 eqfnfv2 7034 . . 3 ((𝑈 Fn (0..^(♯‘𝑈)) ∧ 𝑊 Fn (0..^(♯‘𝑊))) → (𝑈 = 𝑊 ↔ ((0..^(♯‘𝑈)) = (0..^(♯‘𝑊)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑈))(𝑈𝑖) = (𝑊𝑖))))
41, 2, 3syl2an 594 . 2 ((𝑈 ∈ Word 𝑆𝑊 ∈ Word 𝑇) → (𝑈 = 𝑊 ↔ ((0..^(♯‘𝑈)) = (0..^(♯‘𝑊)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑈))(𝑈𝑖) = (𝑊𝑖))))
5 fveq2 6892 . . . . 5 ((0..^(♯‘𝑈)) = (0..^(♯‘𝑊)) → (♯‘(0..^(♯‘𝑈))) = (♯‘(0..^(♯‘𝑊))))
6 lencl 14489 . . . . . . 7 (𝑈 ∈ Word 𝑆 → (♯‘𝑈) ∈ ℕ0)
7 hashfzo0 14396 . . . . . . 7 ((♯‘𝑈) ∈ ℕ0 → (♯‘(0..^(♯‘𝑈))) = (♯‘𝑈))
86, 7syl 17 . . . . . 6 (𝑈 ∈ Word 𝑆 → (♯‘(0..^(♯‘𝑈))) = (♯‘𝑈))
9 lencl 14489 . . . . . . 7 (𝑊 ∈ Word 𝑇 → (♯‘𝑊) ∈ ℕ0)
10 hashfzo0 14396 . . . . . . 7 ((♯‘𝑊) ∈ ℕ0 → (♯‘(0..^(♯‘𝑊))) = (♯‘𝑊))
119, 10syl 17 . . . . . 6 (𝑊 ∈ Word 𝑇 → (♯‘(0..^(♯‘𝑊))) = (♯‘𝑊))
128, 11eqeqan12d 2744 . . . . 5 ((𝑈 ∈ Word 𝑆𝑊 ∈ Word 𝑇) → ((♯‘(0..^(♯‘𝑈))) = (♯‘(0..^(♯‘𝑊))) ↔ (♯‘𝑈) = (♯‘𝑊)))
135, 12imbitrid 243 . . . 4 ((𝑈 ∈ Word 𝑆𝑊 ∈ Word 𝑇) → ((0..^(♯‘𝑈)) = (0..^(♯‘𝑊)) → (♯‘𝑈) = (♯‘𝑊)))
14 oveq2 7421 . . . 4 ((♯‘𝑈) = (♯‘𝑊) → (0..^(♯‘𝑈)) = (0..^(♯‘𝑊)))
1513, 14impbid1 224 . . 3 ((𝑈 ∈ Word 𝑆𝑊 ∈ Word 𝑇) → ((0..^(♯‘𝑈)) = (0..^(♯‘𝑊)) ↔ (♯‘𝑈) = (♯‘𝑊)))
1615anbi1d 628 . 2 ((𝑈 ∈ Word 𝑆𝑊 ∈ Word 𝑇) → (((0..^(♯‘𝑈)) = (0..^(♯‘𝑊)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑈))(𝑈𝑖) = (𝑊𝑖)) ↔ ((♯‘𝑈) = (♯‘𝑊) ∧ ∀𝑖 ∈ (0..^(♯‘𝑈))(𝑈𝑖) = (𝑊𝑖))))
174, 16bitrd 278 1 ((𝑈 ∈ Word 𝑆𝑊 ∈ Word 𝑇) → (𝑈 = 𝑊 ↔ ((♯‘𝑈) = (♯‘𝑊) ∧ ∀𝑖 ∈ (0..^(♯‘𝑈))(𝑈𝑖) = (𝑊𝑖))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1539  wcel 2104  wral 3059   Fn wfn 6539  cfv 6544  (class class class)co 7413  0cc0 11114  0cn0 12478  ..^cfzo 13633  chash 14296  Word cword 14470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-er 8707  df-en 8944  df-dom 8945  df-sdom 8946  df-fin 8947  df-card 9938  df-pnf 11256  df-mnf 11257  df-xr 11258  df-ltxr 11259  df-le 11260  df-sub 11452  df-neg 11453  df-nn 12219  df-n0 12479  df-z 12565  df-uz 12829  df-fz 13491  df-fzo 13634  df-hash 14297  df-word 14471
This theorem is referenced by:  eqs1  14568  swrdspsleq  14621  pfxeq  14652  pfxsuffeqwrdeq  14654  repswpfx  14741  2cshw  14769  pfx2  14904  wwlktovf1  14914  eqwrds3  14918  wlkeq  29156  wwlkseq  29410
  Copyright terms: Public domain W3C validator