Step | Hyp | Ref
| Expression |
1 | | sticksstones17.4 |
. . . . . . . . . . . . . . . 16
⊢ 𝐵 = {ℎ ∣ (ℎ:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (ℎ‘𝑖) = 𝑁)} |
2 | 1 | eqimssi 3979 |
. . . . . . . . . . . . . . 15
⊢ 𝐵 ⊆ {ℎ ∣ (ℎ:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (ℎ‘𝑖) = 𝑁)} |
3 | 2 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐵 ⊆ {ℎ ∣ (ℎ:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (ℎ‘𝑖) = 𝑁)}) |
4 | 3 | sseld 3920 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑏 ∈ 𝐵 → 𝑏 ∈ {ℎ ∣ (ℎ:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (ℎ‘𝑖) = 𝑁)})) |
5 | 4 | imp 407 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝑏 ∈ {ℎ ∣ (ℎ:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (ℎ‘𝑖) = 𝑁)}) |
6 | | vex 3436 |
. . . . . . . . . . . . 13
⊢ 𝑏 ∈ V |
7 | | feq1 6581 |
. . . . . . . . . . . . . 14
⊢ (ℎ = 𝑏 → (ℎ:𝑆⟶ℕ0 ↔ 𝑏:𝑆⟶ℕ0)) |
8 | | simpl 483 |
. . . . . . . . . . . . . . . . 17
⊢ ((ℎ = 𝑏 ∧ 𝑖 ∈ 𝑆) → ℎ = 𝑏) |
9 | 8 | fveq1d 6776 |
. . . . . . . . . . . . . . . 16
⊢ ((ℎ = 𝑏 ∧ 𝑖 ∈ 𝑆) → (ℎ‘𝑖) = (𝑏‘𝑖)) |
10 | 9 | sumeq2dv 15415 |
. . . . . . . . . . . . . . 15
⊢ (ℎ = 𝑏 → Σ𝑖 ∈ 𝑆 (ℎ‘𝑖) = Σ𝑖 ∈ 𝑆 (𝑏‘𝑖)) |
11 | 10 | eqeq1d 2740 |
. . . . . . . . . . . . . 14
⊢ (ℎ = 𝑏 → (Σ𝑖 ∈ 𝑆 (ℎ‘𝑖) = 𝑁 ↔ Σ𝑖 ∈ 𝑆 (𝑏‘𝑖) = 𝑁)) |
12 | 7, 11 | anbi12d 631 |
. . . . . . . . . . . . 13
⊢ (ℎ = 𝑏 → ((ℎ:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (ℎ‘𝑖) = 𝑁) ↔ (𝑏:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑏‘𝑖) = 𝑁))) |
13 | 6, 12 | elab 3609 |
. . . . . . . . . . . 12
⊢ (𝑏 ∈ {ℎ ∣ (ℎ:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (ℎ‘𝑖) = 𝑁)} ↔ (𝑏:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑏‘𝑖) = 𝑁)) |
14 | 5, 13 | sylib 217 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑏:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑏‘𝑖) = 𝑁)) |
15 | 14 | simpld 495 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝑏:𝑆⟶ℕ0) |
16 | 15 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (1...𝐾)) → 𝑏:𝑆⟶ℕ0) |
17 | 16 | 3impa 1109 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑦 ∈ (1...𝐾)) → 𝑏:𝑆⟶ℕ0) |
18 | | sticksstones17.5 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑍:(1...𝐾)–1-1-onto→𝑆) |
19 | | f1of 6716 |
. . . . . . . . . . . . 13
⊢ (𝑍:(1...𝐾)–1-1-onto→𝑆 → 𝑍:(1...𝐾)⟶𝑆) |
20 | 18, 19 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑍:(1...𝐾)⟶𝑆) |
21 | 20 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝑍:(1...𝐾)⟶𝑆) |
22 | 21 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (1...𝐾)) → 𝑍:(1...𝐾)⟶𝑆) |
23 | 22 | 3impa 1109 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑦 ∈ (1...𝐾)) → 𝑍:(1...𝐾)⟶𝑆) |
24 | | simp3 1137 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑦 ∈ (1...𝐾)) → 𝑦 ∈ (1...𝐾)) |
25 | 23, 24 | ffvelrnd 6962 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑦 ∈ (1...𝐾)) → (𝑍‘𝑦) ∈ 𝑆) |
26 | 17, 25 | ffvelrnd 6962 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑦 ∈ (1...𝐾)) → (𝑏‘(𝑍‘𝑦)) ∈
ℕ0) |
27 | 26 | 3expa 1117 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (1...𝐾)) → (𝑏‘(𝑍‘𝑦)) ∈
ℕ0) |
28 | 27 | fmpttd 6989 |
. . . . 5
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍‘𝑦))):(1...𝐾)⟶ℕ0) |
29 | | eqidd 2739 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝐾)) → (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍‘𝑦))) = (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍‘𝑦)))) |
30 | | simpr 485 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝐾)) ∧ 𝑦 = 𝑖) → 𝑦 = 𝑖) |
31 | 30 | fveq2d 6778 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝐾)) ∧ 𝑦 = 𝑖) → (𝑍‘𝑦) = (𝑍‘𝑖)) |
32 | 31 | fveq2d 6778 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝐾)) ∧ 𝑦 = 𝑖) → (𝑏‘(𝑍‘𝑦)) = (𝑏‘(𝑍‘𝑖))) |
33 | | simpr 485 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝐾)) → 𝑖 ∈ (1...𝐾)) |
34 | | fvexd 6789 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝐾)) → (𝑏‘(𝑍‘𝑖)) ∈ V) |
35 | 29, 32, 33, 34 | fvmptd 6882 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝐾)) → ((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍‘𝑦)))‘𝑖) = (𝑏‘(𝑍‘𝑖))) |
36 | 35 | sumeq2dv 15415 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → Σ𝑖 ∈ (1...𝐾)((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍‘𝑦)))‘𝑖) = Σ𝑖 ∈ (1...𝐾)(𝑏‘(𝑍‘𝑖))) |
37 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑠 = (𝑍‘𝑖) → (𝑏‘𝑠) = (𝑏‘(𝑍‘𝑖))) |
38 | | fzfi 13692 |
. . . . . . . . . 10
⊢
(1...𝐾) ∈
Fin |
39 | 38 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (1...𝐾) ∈ Fin) |
40 | 18 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝑍:(1...𝐾)–1-1-onto→𝑆) |
41 | | eqidd 2739 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝐾)) → (𝑍‘𝑖) = (𝑍‘𝑖)) |
42 | | nn0sscn 12238 |
. . . . . . . . . . . 12
⊢
ℕ0 ⊆ ℂ |
43 | 42 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ℕ0 ⊆
ℂ) |
44 | | fss 6617 |
. . . . . . . . . . 11
⊢ ((𝑏:𝑆⟶ℕ0 ∧
ℕ0 ⊆ ℂ) → 𝑏:𝑆⟶ℂ) |
45 | 15, 43, 44 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝑏:𝑆⟶ℂ) |
46 | 45 | ffvelrnda 6961 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑠 ∈ 𝑆) → (𝑏‘𝑠) ∈ ℂ) |
47 | 37, 39, 40, 41, 46 | fsumf1o 15435 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → Σ𝑠 ∈ 𝑆 (𝑏‘𝑠) = Σ𝑖 ∈ (1...𝐾)(𝑏‘(𝑍‘𝑖))) |
48 | 47 | eqcomd 2744 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → Σ𝑖 ∈ (1...𝐾)(𝑏‘(𝑍‘𝑖)) = Σ𝑠 ∈ 𝑆 (𝑏‘𝑠)) |
49 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑖 → (𝑏‘𝑠) = (𝑏‘𝑖)) |
50 | 49 | cbvsumv 15408 |
. . . . . . . . 9
⊢
Σ𝑠 ∈
𝑆 (𝑏‘𝑠) = Σ𝑖 ∈ 𝑆 (𝑏‘𝑖) |
51 | 50 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → Σ𝑠 ∈ 𝑆 (𝑏‘𝑠) = Σ𝑖 ∈ 𝑆 (𝑏‘𝑖)) |
52 | 14 | simprd 496 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → Σ𝑖 ∈ 𝑆 (𝑏‘𝑖) = 𝑁) |
53 | 51, 52 | eqtrd 2778 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → Σ𝑠 ∈ 𝑆 (𝑏‘𝑠) = 𝑁) |
54 | 48, 53 | eqtrd 2778 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → Σ𝑖 ∈ (1...𝐾)(𝑏‘(𝑍‘𝑖)) = 𝑁) |
55 | 36, 54 | eqtrd 2778 |
. . . . 5
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → Σ𝑖 ∈ (1...𝐾)((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍‘𝑦)))‘𝑖) = 𝑁) |
56 | 28, 55 | jca 512 |
. . . 4
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍‘𝑦))):(1...𝐾)⟶ℕ0 ∧
Σ𝑖 ∈ (1...𝐾)((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍‘𝑦)))‘𝑖) = 𝑁)) |
57 | | fzfid 13693 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (1...𝐾) ∈ Fin) |
58 | 57 | mptexd 7100 |
. . . . 5
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍‘𝑦))) ∈ V) |
59 | | feq1 6581 |
. . . . . . 7
⊢ (𝑔 = (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍‘𝑦))) → (𝑔:(1...𝐾)⟶ℕ0 ↔ (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍‘𝑦))):(1...𝐾)⟶ℕ0)) |
60 | | simpl 483 |
. . . . . . . . . 10
⊢ ((𝑔 = (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍‘𝑦))) ∧ 𝑖 ∈ (1...𝐾)) → 𝑔 = (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍‘𝑦)))) |
61 | 60 | fveq1d 6776 |
. . . . . . . . 9
⊢ ((𝑔 = (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍‘𝑦))) ∧ 𝑖 ∈ (1...𝐾)) → (𝑔‘𝑖) = ((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍‘𝑦)))‘𝑖)) |
62 | 61 | sumeq2dv 15415 |
. . . . . . . 8
⊢ (𝑔 = (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍‘𝑦))) → Σ𝑖 ∈ (1...𝐾)(𝑔‘𝑖) = Σ𝑖 ∈ (1...𝐾)((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍‘𝑦)))‘𝑖)) |
63 | 62 | eqeq1d 2740 |
. . . . . . 7
⊢ (𝑔 = (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍‘𝑦))) → (Σ𝑖 ∈ (1...𝐾)(𝑔‘𝑖) = 𝑁 ↔ Σ𝑖 ∈ (1...𝐾)((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍‘𝑦)))‘𝑖) = 𝑁)) |
64 | 59, 63 | anbi12d 631 |
. . . . . 6
⊢ (𝑔 = (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍‘𝑦))) → ((𝑔:(1...𝐾)⟶ℕ0 ∧
Σ𝑖 ∈ (1...𝐾)(𝑔‘𝑖) = 𝑁) ↔ ((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍‘𝑦))):(1...𝐾)⟶ℕ0 ∧
Σ𝑖 ∈ (1...𝐾)((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍‘𝑦)))‘𝑖) = 𝑁))) |
65 | 64 | elabg 3607 |
. . . . 5
⊢ ((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍‘𝑦))) ∈ V → ((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍‘𝑦))) ∈ {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧
Σ𝑖 ∈ (1...𝐾)(𝑔‘𝑖) = 𝑁)} ↔ ((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍‘𝑦))):(1...𝐾)⟶ℕ0 ∧
Σ𝑖 ∈ (1...𝐾)((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍‘𝑦)))‘𝑖) = 𝑁))) |
66 | 58, 65 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍‘𝑦))) ∈ {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧
Σ𝑖 ∈ (1...𝐾)(𝑔‘𝑖) = 𝑁)} ↔ ((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍‘𝑦))):(1...𝐾)⟶ℕ0 ∧
Σ𝑖 ∈ (1...𝐾)((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍‘𝑦)))‘𝑖) = 𝑁))) |
67 | 56, 66 | mpbird 256 |
. . 3
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍‘𝑦))) ∈ {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧
Σ𝑖 ∈ (1...𝐾)(𝑔‘𝑖) = 𝑁)}) |
68 | | sticksstones17.3 |
. . . 4
⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧
Σ𝑖 ∈ (1...𝐾)(𝑔‘𝑖) = 𝑁)} |
69 | 68 | a1i 11 |
. . 3
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧
Σ𝑖 ∈ (1...𝐾)(𝑔‘𝑖) = 𝑁)}) |
70 | 67, 69 | eleqtrrd 2842 |
. 2
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍‘𝑦))) ∈ 𝐴) |
71 | | sticksstones17.6 |
. 2
⊢ 𝐺 = (𝑏 ∈ 𝐵 ↦ (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍‘𝑦)))) |
72 | 70, 71 | fmptd 6988 |
1
⊢ (𝜑 → 𝐺:𝐵⟶𝐴) |