Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sticksstones17 Structured version   Visualization version   GIF version

Theorem sticksstones17 42156
Description: Extend sticks and stones to finite sets, bijective builder. (Contributed by metakunt, 23-Oct-2024.)
Hypotheses
Ref Expression
sticksstones17.1 (𝜑𝑁 ∈ ℕ0)
sticksstones17.2 (𝜑𝐾 ∈ ℕ0)
sticksstones17.3 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)}
sticksstones17.4 𝐵 = { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)}
sticksstones17.5 (𝜑𝑍:(1...𝐾)–1-1-onto𝑆)
sticksstones17.6 𝐺 = (𝑏𝐵 ↦ (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))))
Assertion
Ref Expression
sticksstones17 (𝜑𝐺:𝐵𝐴)
Distinct variable groups:   𝐴,𝑏   𝐵,𝑏,𝑖,𝑦   𝑔,𝐾,𝑖,𝑦   𝑔,𝑁   ,𝑁   𝑆,,𝑖   𝑔,𝑍,𝑖,𝑦   𝑔,𝑏   ,𝑏   𝜑,𝑏,𝑖,𝑦
Allowed substitution hints:   𝜑(𝑔,)   𝐴(𝑦,𝑔,,𝑖)   𝐵(𝑔,)   𝑆(𝑦,𝑔,𝑏)   𝐺(𝑦,𝑔,,𝑖,𝑏)   𝐾(,𝑏)   𝑁(𝑦,𝑖,𝑏)   𝑍(,𝑏)

Proof of Theorem sticksstones17
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 sticksstones17.4 . . . . . . . . . . . . . . . 16 𝐵 = { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)}
21eqimssi 3996 . . . . . . . . . . . . . . 15 𝐵 ⊆ { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)}
32a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐵 ⊆ { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)})
43sseld 3934 . . . . . . . . . . . . 13 (𝜑 → (𝑏𝐵𝑏 ∈ { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)}))
54imp 406 . . . . . . . . . . . 12 ((𝜑𝑏𝐵) → 𝑏 ∈ { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)})
6 vex 3440 . . . . . . . . . . . . 13 𝑏 ∈ V
7 feq1 6630 . . . . . . . . . . . . . 14 ( = 𝑏 → (:𝑆⟶ℕ0𝑏:𝑆⟶ℕ0))
8 simpl 482 . . . . . . . . . . . . . . . . 17 (( = 𝑏𝑖𝑆) → = 𝑏)
98fveq1d 6824 . . . . . . . . . . . . . . . 16 (( = 𝑏𝑖𝑆) → (𝑖) = (𝑏𝑖))
109sumeq2dv 15609 . . . . . . . . . . . . . . 15 ( = 𝑏 → Σ𝑖𝑆 (𝑖) = Σ𝑖𝑆 (𝑏𝑖))
1110eqeq1d 2731 . . . . . . . . . . . . . 14 ( = 𝑏 → (Σ𝑖𝑆 (𝑖) = 𝑁 ↔ Σ𝑖𝑆 (𝑏𝑖) = 𝑁))
127, 11anbi12d 632 . . . . . . . . . . . . 13 ( = 𝑏 → ((:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁) ↔ (𝑏:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑏𝑖) = 𝑁)))
136, 12elab 3635 . . . . . . . . . . . 12 (𝑏 ∈ { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)} ↔ (𝑏:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑏𝑖) = 𝑁))
145, 13sylib 218 . . . . . . . . . . 11 ((𝜑𝑏𝐵) → (𝑏:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑏𝑖) = 𝑁))
1514simpld 494 . . . . . . . . . 10 ((𝜑𝑏𝐵) → 𝑏:𝑆⟶ℕ0)
1615adantr 480 . . . . . . . . 9 (((𝜑𝑏𝐵) ∧ 𝑦 ∈ (1...𝐾)) → 𝑏:𝑆⟶ℕ0)
17163impa 1109 . . . . . . . 8 ((𝜑𝑏𝐵𝑦 ∈ (1...𝐾)) → 𝑏:𝑆⟶ℕ0)
18 sticksstones17.5 . . . . . . . . . . . . 13 (𝜑𝑍:(1...𝐾)–1-1-onto𝑆)
19 f1of 6764 . . . . . . . . . . . . 13 (𝑍:(1...𝐾)–1-1-onto𝑆𝑍:(1...𝐾)⟶𝑆)
2018, 19syl 17 . . . . . . . . . . . 12 (𝜑𝑍:(1...𝐾)⟶𝑆)
2120adantr 480 . . . . . . . . . . 11 ((𝜑𝑏𝐵) → 𝑍:(1...𝐾)⟶𝑆)
2221adantr 480 . . . . . . . . . 10 (((𝜑𝑏𝐵) ∧ 𝑦 ∈ (1...𝐾)) → 𝑍:(1...𝐾)⟶𝑆)
23223impa 1109 . . . . . . . . 9 ((𝜑𝑏𝐵𝑦 ∈ (1...𝐾)) → 𝑍:(1...𝐾)⟶𝑆)
24 simp3 1138 . . . . . . . . 9 ((𝜑𝑏𝐵𝑦 ∈ (1...𝐾)) → 𝑦 ∈ (1...𝐾))
2523, 24ffvelcdmd 7019 . . . . . . . 8 ((𝜑𝑏𝐵𝑦 ∈ (1...𝐾)) → (𝑍𝑦) ∈ 𝑆)
2617, 25ffvelcdmd 7019 . . . . . . 7 ((𝜑𝑏𝐵𝑦 ∈ (1...𝐾)) → (𝑏‘(𝑍𝑦)) ∈ ℕ0)
27263expa 1118 . . . . . 6 (((𝜑𝑏𝐵) ∧ 𝑦 ∈ (1...𝐾)) → (𝑏‘(𝑍𝑦)) ∈ ℕ0)
2827fmpttd 7049 . . . . 5 ((𝜑𝑏𝐵) → (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))):(1...𝐾)⟶ℕ0)
29 eqidd 2730 . . . . . . . 8 (((𝜑𝑏𝐵) ∧ 𝑖 ∈ (1...𝐾)) → (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))) = (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))))
30 simpr 484 . . . . . . . . . 10 ((((𝜑𝑏𝐵) ∧ 𝑖 ∈ (1...𝐾)) ∧ 𝑦 = 𝑖) → 𝑦 = 𝑖)
3130fveq2d 6826 . . . . . . . . 9 ((((𝜑𝑏𝐵) ∧ 𝑖 ∈ (1...𝐾)) ∧ 𝑦 = 𝑖) → (𝑍𝑦) = (𝑍𝑖))
3231fveq2d 6826 . . . . . . . 8 ((((𝜑𝑏𝐵) ∧ 𝑖 ∈ (1...𝐾)) ∧ 𝑦 = 𝑖) → (𝑏‘(𝑍𝑦)) = (𝑏‘(𝑍𝑖)))
33 simpr 484 . . . . . . . 8 (((𝜑𝑏𝐵) ∧ 𝑖 ∈ (1...𝐾)) → 𝑖 ∈ (1...𝐾))
34 fvexd 6837 . . . . . . . 8 (((𝜑𝑏𝐵) ∧ 𝑖 ∈ (1...𝐾)) → (𝑏‘(𝑍𝑖)) ∈ V)
3529, 32, 33, 34fvmptd 6937 . . . . . . 7 (((𝜑𝑏𝐵) ∧ 𝑖 ∈ (1...𝐾)) → ((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦)))‘𝑖) = (𝑏‘(𝑍𝑖)))
3635sumeq2dv 15609 . . . . . 6 ((𝜑𝑏𝐵) → Σ𝑖 ∈ (1...𝐾)((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦)))‘𝑖) = Σ𝑖 ∈ (1...𝐾)(𝑏‘(𝑍𝑖)))
37 fveq2 6822 . . . . . . . . 9 (𝑠 = (𝑍𝑖) → (𝑏𝑠) = (𝑏‘(𝑍𝑖)))
38 fzfi 13879 . . . . . . . . . 10 (1...𝐾) ∈ Fin
3938a1i 11 . . . . . . . . 9 ((𝜑𝑏𝐵) → (1...𝐾) ∈ Fin)
4018adantr 480 . . . . . . . . 9 ((𝜑𝑏𝐵) → 𝑍:(1...𝐾)–1-1-onto𝑆)
41 eqidd 2730 . . . . . . . . 9 (((𝜑𝑏𝐵) ∧ 𝑖 ∈ (1...𝐾)) → (𝑍𝑖) = (𝑍𝑖))
42 nn0sscn 12389 . . . . . . . . . . . 12 0 ⊆ ℂ
4342a1i 11 . . . . . . . . . . 11 ((𝜑𝑏𝐵) → ℕ0 ⊆ ℂ)
44 fss 6668 . . . . . . . . . . 11 ((𝑏:𝑆⟶ℕ0 ∧ ℕ0 ⊆ ℂ) → 𝑏:𝑆⟶ℂ)
4515, 43, 44syl2anc 584 . . . . . . . . . 10 ((𝜑𝑏𝐵) → 𝑏:𝑆⟶ℂ)
4645ffvelcdmda 7018 . . . . . . . . 9 (((𝜑𝑏𝐵) ∧ 𝑠𝑆) → (𝑏𝑠) ∈ ℂ)
4737, 39, 40, 41, 46fsumf1o 15630 . . . . . . . 8 ((𝜑𝑏𝐵) → Σ𝑠𝑆 (𝑏𝑠) = Σ𝑖 ∈ (1...𝐾)(𝑏‘(𝑍𝑖)))
4847eqcomd 2735 . . . . . . 7 ((𝜑𝑏𝐵) → Σ𝑖 ∈ (1...𝐾)(𝑏‘(𝑍𝑖)) = Σ𝑠𝑆 (𝑏𝑠))
49 fveq2 6822 . . . . . . . . . 10 (𝑠 = 𝑖 → (𝑏𝑠) = (𝑏𝑖))
5049cbvsumv 15603 . . . . . . . . 9 Σ𝑠𝑆 (𝑏𝑠) = Σ𝑖𝑆 (𝑏𝑖)
5150a1i 11 . . . . . . . 8 ((𝜑𝑏𝐵) → Σ𝑠𝑆 (𝑏𝑠) = Σ𝑖𝑆 (𝑏𝑖))
5214simprd 495 . . . . . . . 8 ((𝜑𝑏𝐵) → Σ𝑖𝑆 (𝑏𝑖) = 𝑁)
5351, 52eqtrd 2764 . . . . . . 7 ((𝜑𝑏𝐵) → Σ𝑠𝑆 (𝑏𝑠) = 𝑁)
5448, 53eqtrd 2764 . . . . . 6 ((𝜑𝑏𝐵) → Σ𝑖 ∈ (1...𝐾)(𝑏‘(𝑍𝑖)) = 𝑁)
5536, 54eqtrd 2764 . . . . 5 ((𝜑𝑏𝐵) → Σ𝑖 ∈ (1...𝐾)((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦)))‘𝑖) = 𝑁)
5628, 55jca 511 . . . 4 ((𝜑𝑏𝐵) → ((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))):(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦)))‘𝑖) = 𝑁))
57 fzfid 13880 . . . . . 6 ((𝜑𝑏𝐵) → (1...𝐾) ∈ Fin)
5857mptexd 7160 . . . . 5 ((𝜑𝑏𝐵) → (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))) ∈ V)
59 feq1 6630 . . . . . . 7 (𝑔 = (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))) → (𝑔:(1...𝐾)⟶ℕ0 ↔ (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))):(1...𝐾)⟶ℕ0))
60 simpl 482 . . . . . . . . . 10 ((𝑔 = (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))) ∧ 𝑖 ∈ (1...𝐾)) → 𝑔 = (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))))
6160fveq1d 6824 . . . . . . . . 9 ((𝑔 = (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))) ∧ 𝑖 ∈ (1...𝐾)) → (𝑔𝑖) = ((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦)))‘𝑖))
6261sumeq2dv 15609 . . . . . . . 8 (𝑔 = (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))) → Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = Σ𝑖 ∈ (1...𝐾)((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦)))‘𝑖))
6362eqeq1d 2731 . . . . . . 7 (𝑔 = (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))) → (Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁 ↔ Σ𝑖 ∈ (1...𝐾)((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦)))‘𝑖) = 𝑁))
6459, 63anbi12d 632 . . . . . 6 (𝑔 = (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))) → ((𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁) ↔ ((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))):(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦)))‘𝑖) = 𝑁)))
6564elabg 3632 . . . . 5 ((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))) ∈ V → ((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))) ∈ {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)} ↔ ((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))):(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦)))‘𝑖) = 𝑁)))
6658, 65syl 17 . . . 4 ((𝜑𝑏𝐵) → ((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))) ∈ {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)} ↔ ((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))):(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦)))‘𝑖) = 𝑁)))
6756, 66mpbird 257 . . 3 ((𝜑𝑏𝐵) → (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))) ∈ {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)})
68 sticksstones17.3 . . . 4 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)}
6968a1i 11 . . 3 ((𝜑𝑏𝐵) → 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)})
7067, 69eleqtrrd 2831 . 2 ((𝜑𝑏𝐵) → (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))) ∈ 𝐴)
71 sticksstones17.6 . 2 𝐺 = (𝑏𝐵 ↦ (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))))
7270, 71fmptd 7048 1 (𝜑𝐺:𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  Vcvv 3436  wss 3903  cmpt 5173  wf 6478  1-1-ontowf1o 6481  cfv 6482  (class class class)co 7349  Fincfn 8872  cc 11007  1c1 11010  0cn0 12384  ...cfz 13410  Σcsu 15593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594
This theorem is referenced by:  sticksstones19  42158
  Copyright terms: Public domain W3C validator