Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sticksstones17 Structured version   Visualization version   GIF version

Theorem sticksstones17 39796
Description: Extend sticks and stones to finite sets, bijective builder. (Contributed by metakunt, 23-Oct-2024.)
Hypotheses
Ref Expression
sticksstones17.1 (𝜑𝑁 ∈ ℕ0)
sticksstones17.2 (𝜑𝐾 ∈ ℕ0)
sticksstones17.3 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)}
sticksstones17.4 𝐵 = { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)}
sticksstones17.5 (𝜑𝑍:(1...𝐾)–1-1-onto𝑆)
sticksstones17.6 𝐺 = (𝑏𝐵 ↦ (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))))
Assertion
Ref Expression
sticksstones17 (𝜑𝐺:𝐵𝐴)
Distinct variable groups:   𝐴,𝑏   𝐵,𝑏,𝑖,𝑦   𝑔,𝐾,𝑖,𝑦   𝑔,𝑁   ,𝑁   𝑆,,𝑖   𝑔,𝑍,𝑖,𝑦   𝑔,𝑏   ,𝑏   𝜑,𝑏,𝑖,𝑦
Allowed substitution hints:   𝜑(𝑔,)   𝐴(𝑦,𝑔,,𝑖)   𝐵(𝑔,)   𝑆(𝑦,𝑔,𝑏)   𝐺(𝑦,𝑔,,𝑖,𝑏)   𝐾(,𝑏)   𝑁(𝑦,𝑖,𝑏)   𝑍(,𝑏)

Proof of Theorem sticksstones17
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 sticksstones17.4 . . . . . . . . . . . . . . . 16 𝐵 = { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)}
21eqimssi 3949 . . . . . . . . . . . . . . 15 𝐵 ⊆ { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)}
32a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐵 ⊆ { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)})
43sseld 3890 . . . . . . . . . . . . 13 (𝜑 → (𝑏𝐵𝑏 ∈ { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)}))
54imp 410 . . . . . . . . . . . 12 ((𝜑𝑏𝐵) → 𝑏 ∈ { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)})
6 vex 3405 . . . . . . . . . . . . 13 𝑏 ∈ V
7 feq1 6515 . . . . . . . . . . . . . 14 ( = 𝑏 → (:𝑆⟶ℕ0𝑏:𝑆⟶ℕ0))
8 simpl 486 . . . . . . . . . . . . . . . . 17 (( = 𝑏𝑖𝑆) → = 𝑏)
98fveq1d 6708 . . . . . . . . . . . . . . . 16 (( = 𝑏𝑖𝑆) → (𝑖) = (𝑏𝑖))
109sumeq2dv 15250 . . . . . . . . . . . . . . 15 ( = 𝑏 → Σ𝑖𝑆 (𝑖) = Σ𝑖𝑆 (𝑏𝑖))
1110eqeq1d 2736 . . . . . . . . . . . . . 14 ( = 𝑏 → (Σ𝑖𝑆 (𝑖) = 𝑁 ↔ Σ𝑖𝑆 (𝑏𝑖) = 𝑁))
127, 11anbi12d 634 . . . . . . . . . . . . 13 ( = 𝑏 → ((:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁) ↔ (𝑏:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑏𝑖) = 𝑁)))
136, 12elab 3580 . . . . . . . . . . . 12 (𝑏 ∈ { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)} ↔ (𝑏:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑏𝑖) = 𝑁))
145, 13sylib 221 . . . . . . . . . . 11 ((𝜑𝑏𝐵) → (𝑏:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑏𝑖) = 𝑁))
1514simpld 498 . . . . . . . . . 10 ((𝜑𝑏𝐵) → 𝑏:𝑆⟶ℕ0)
1615adantr 484 . . . . . . . . 9 (((𝜑𝑏𝐵) ∧ 𝑦 ∈ (1...𝐾)) → 𝑏:𝑆⟶ℕ0)
17163impa 1112 . . . . . . . 8 ((𝜑𝑏𝐵𝑦 ∈ (1...𝐾)) → 𝑏:𝑆⟶ℕ0)
18 sticksstones17.5 . . . . . . . . . . . . 13 (𝜑𝑍:(1...𝐾)–1-1-onto𝑆)
19 f1of 6650 . . . . . . . . . . . . 13 (𝑍:(1...𝐾)–1-1-onto𝑆𝑍:(1...𝐾)⟶𝑆)
2018, 19syl 17 . . . . . . . . . . . 12 (𝜑𝑍:(1...𝐾)⟶𝑆)
2120adantr 484 . . . . . . . . . . 11 ((𝜑𝑏𝐵) → 𝑍:(1...𝐾)⟶𝑆)
2221adantr 484 . . . . . . . . . 10 (((𝜑𝑏𝐵) ∧ 𝑦 ∈ (1...𝐾)) → 𝑍:(1...𝐾)⟶𝑆)
23223impa 1112 . . . . . . . . 9 ((𝜑𝑏𝐵𝑦 ∈ (1...𝐾)) → 𝑍:(1...𝐾)⟶𝑆)
24 simp3 1140 . . . . . . . . 9 ((𝜑𝑏𝐵𝑦 ∈ (1...𝐾)) → 𝑦 ∈ (1...𝐾))
2523, 24ffvelrnd 6894 . . . . . . . 8 ((𝜑𝑏𝐵𝑦 ∈ (1...𝐾)) → (𝑍𝑦) ∈ 𝑆)
2617, 25ffvelrnd 6894 . . . . . . 7 ((𝜑𝑏𝐵𝑦 ∈ (1...𝐾)) → (𝑏‘(𝑍𝑦)) ∈ ℕ0)
27263expa 1120 . . . . . 6 (((𝜑𝑏𝐵) ∧ 𝑦 ∈ (1...𝐾)) → (𝑏‘(𝑍𝑦)) ∈ ℕ0)
2827fmpttd 6921 . . . . 5 ((𝜑𝑏𝐵) → (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))):(1...𝐾)⟶ℕ0)
29 eqidd 2735 . . . . . . . 8 (((𝜑𝑏𝐵) ∧ 𝑖 ∈ (1...𝐾)) → (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))) = (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))))
30 simpr 488 . . . . . . . . . 10 ((((𝜑𝑏𝐵) ∧ 𝑖 ∈ (1...𝐾)) ∧ 𝑦 = 𝑖) → 𝑦 = 𝑖)
3130fveq2d 6710 . . . . . . . . 9 ((((𝜑𝑏𝐵) ∧ 𝑖 ∈ (1...𝐾)) ∧ 𝑦 = 𝑖) → (𝑍𝑦) = (𝑍𝑖))
3231fveq2d 6710 . . . . . . . 8 ((((𝜑𝑏𝐵) ∧ 𝑖 ∈ (1...𝐾)) ∧ 𝑦 = 𝑖) → (𝑏‘(𝑍𝑦)) = (𝑏‘(𝑍𝑖)))
33 simpr 488 . . . . . . . 8 (((𝜑𝑏𝐵) ∧ 𝑖 ∈ (1...𝐾)) → 𝑖 ∈ (1...𝐾))
34 fvexd 6721 . . . . . . . 8 (((𝜑𝑏𝐵) ∧ 𝑖 ∈ (1...𝐾)) → (𝑏‘(𝑍𝑖)) ∈ V)
3529, 32, 33, 34fvmptd 6814 . . . . . . 7 (((𝜑𝑏𝐵) ∧ 𝑖 ∈ (1...𝐾)) → ((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦)))‘𝑖) = (𝑏‘(𝑍𝑖)))
3635sumeq2dv 15250 . . . . . 6 ((𝜑𝑏𝐵) → Σ𝑖 ∈ (1...𝐾)((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦)))‘𝑖) = Σ𝑖 ∈ (1...𝐾)(𝑏‘(𝑍𝑖)))
37 fveq2 6706 . . . . . . . . 9 (𝑠 = (𝑍𝑖) → (𝑏𝑠) = (𝑏‘(𝑍𝑖)))
38 fzfi 13528 . . . . . . . . . 10 (1...𝐾) ∈ Fin
3938a1i 11 . . . . . . . . 9 ((𝜑𝑏𝐵) → (1...𝐾) ∈ Fin)
4018adantr 484 . . . . . . . . 9 ((𝜑𝑏𝐵) → 𝑍:(1...𝐾)–1-1-onto𝑆)
41 eqidd 2735 . . . . . . . . 9 (((𝜑𝑏𝐵) ∧ 𝑖 ∈ (1...𝐾)) → (𝑍𝑖) = (𝑍𝑖))
42 nn0sscn 12078 . . . . . . . . . . . 12 0 ⊆ ℂ
4342a1i 11 . . . . . . . . . . 11 ((𝜑𝑏𝐵) → ℕ0 ⊆ ℂ)
44 fss 6551 . . . . . . . . . . 11 ((𝑏:𝑆⟶ℕ0 ∧ ℕ0 ⊆ ℂ) → 𝑏:𝑆⟶ℂ)
4515, 43, 44syl2anc 587 . . . . . . . . . 10 ((𝜑𝑏𝐵) → 𝑏:𝑆⟶ℂ)
4645ffvelrnda 6893 . . . . . . . . 9 (((𝜑𝑏𝐵) ∧ 𝑠𝑆) → (𝑏𝑠) ∈ ℂ)
4737, 39, 40, 41, 46fsumf1o 15270 . . . . . . . 8 ((𝜑𝑏𝐵) → Σ𝑠𝑆 (𝑏𝑠) = Σ𝑖 ∈ (1...𝐾)(𝑏‘(𝑍𝑖)))
4847eqcomd 2740 . . . . . . 7 ((𝜑𝑏𝐵) → Σ𝑖 ∈ (1...𝐾)(𝑏‘(𝑍𝑖)) = Σ𝑠𝑆 (𝑏𝑠))
49 fveq2 6706 . . . . . . . . . 10 (𝑠 = 𝑖 → (𝑏𝑠) = (𝑏𝑖))
5049cbvsumv 15243 . . . . . . . . 9 Σ𝑠𝑆 (𝑏𝑠) = Σ𝑖𝑆 (𝑏𝑖)
5150a1i 11 . . . . . . . 8 ((𝜑𝑏𝐵) → Σ𝑠𝑆 (𝑏𝑠) = Σ𝑖𝑆 (𝑏𝑖))
5214simprd 499 . . . . . . . 8 ((𝜑𝑏𝐵) → Σ𝑖𝑆 (𝑏𝑖) = 𝑁)
5351, 52eqtrd 2774 . . . . . . 7 ((𝜑𝑏𝐵) → Σ𝑠𝑆 (𝑏𝑠) = 𝑁)
5448, 53eqtrd 2774 . . . . . 6 ((𝜑𝑏𝐵) → Σ𝑖 ∈ (1...𝐾)(𝑏‘(𝑍𝑖)) = 𝑁)
5536, 54eqtrd 2774 . . . . 5 ((𝜑𝑏𝐵) → Σ𝑖 ∈ (1...𝐾)((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦)))‘𝑖) = 𝑁)
5628, 55jca 515 . . . 4 ((𝜑𝑏𝐵) → ((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))):(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦)))‘𝑖) = 𝑁))
57 fzfid 13529 . . . . . 6 ((𝜑𝑏𝐵) → (1...𝐾) ∈ Fin)
5857mptexd 7029 . . . . 5 ((𝜑𝑏𝐵) → (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))) ∈ V)
59 feq1 6515 . . . . . . 7 (𝑔 = (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))) → (𝑔:(1...𝐾)⟶ℕ0 ↔ (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))):(1...𝐾)⟶ℕ0))
60 simpl 486 . . . . . . . . . 10 ((𝑔 = (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))) ∧ 𝑖 ∈ (1...𝐾)) → 𝑔 = (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))))
6160fveq1d 6708 . . . . . . . . 9 ((𝑔 = (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))) ∧ 𝑖 ∈ (1...𝐾)) → (𝑔𝑖) = ((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦)))‘𝑖))
6261sumeq2dv 15250 . . . . . . . 8 (𝑔 = (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))) → Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = Σ𝑖 ∈ (1...𝐾)((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦)))‘𝑖))
6362eqeq1d 2736 . . . . . . 7 (𝑔 = (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))) → (Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁 ↔ Σ𝑖 ∈ (1...𝐾)((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦)))‘𝑖) = 𝑁))
6459, 63anbi12d 634 . . . . . 6 (𝑔 = (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))) → ((𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁) ↔ ((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))):(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦)))‘𝑖) = 𝑁)))
6564elabg 3578 . . . . 5 ((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))) ∈ V → ((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))) ∈ {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)} ↔ ((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))):(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦)))‘𝑖) = 𝑁)))
6658, 65syl 17 . . . 4 ((𝜑𝑏𝐵) → ((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))) ∈ {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)} ↔ ((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))):(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦)))‘𝑖) = 𝑁)))
6756, 66mpbird 260 . . 3 ((𝜑𝑏𝐵) → (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))) ∈ {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)})
68 sticksstones17.3 . . . 4 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)}
6968a1i 11 . . 3 ((𝜑𝑏𝐵) → 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)})
7067, 69eleqtrrd 2837 . 2 ((𝜑𝑏𝐵) → (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))) ∈ 𝐴)
71 sticksstones17.6 . 2 𝐺 = (𝑏𝐵 ↦ (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))))
7270, 71fmptd 6920 1 (𝜑𝐺:𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  {cab 2712  Vcvv 3401  wss 3857  cmpt 5124  wf 6365  1-1-ontowf1o 6368  cfv 6369  (class class class)co 7202  Fincfn 8615  cc 10710  1c1 10713  0cn0 12073  ...cfz 13078  Σcsu 15232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-inf2 9245  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-se 5499  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-isom 6378  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-er 8380  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-sup 9047  df-oi 9115  df-card 9538  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-2 11876  df-3 11877  df-n0 12074  df-z 12160  df-uz 12422  df-rp 12570  df-fz 13079  df-fzo 13222  df-seq 13558  df-exp 13619  df-hash 13880  df-cj 14645  df-re 14646  df-im 14647  df-sqrt 14781  df-abs 14782  df-clim 15032  df-sum 15233
This theorem is referenced by:  sticksstones19  39798
  Copyright terms: Public domain W3C validator