Step | Hyp | Ref
| Expression |
1 | | sticksstones17.4 |
. . . . . . . . . . . . . . . 16
β’ π΅ = {β β£ (β:πβΆβ0 β§
Ξ£π β π (ββπ) = π)} |
2 | 1 | eqimssi 4038 |
. . . . . . . . . . . . . . 15
β’ π΅ β {β β£ (β:πβΆβ0 β§
Ξ£π β π (ββπ) = π)} |
3 | 2 | a1i 11 |
. . . . . . . . . . . . . 14
β’ (π β π΅ β {β β£ (β:πβΆβ0 β§
Ξ£π β π (ββπ) = π)}) |
4 | 3 | sseld 3977 |
. . . . . . . . . . . . 13
β’ (π β (π β π΅ β π β {β β£ (β:πβΆβ0 β§
Ξ£π β π (ββπ) = π)})) |
5 | 4 | imp 406 |
. . . . . . . . . . . 12
β’ ((π β§ π β π΅) β π β {β β£ (β:πβΆβ0 β§
Ξ£π β π (ββπ) = π)}) |
6 | | vex 3473 |
. . . . . . . . . . . . 13
β’ π β V |
7 | | feq1 6697 |
. . . . . . . . . . . . . 14
β’ (β = π β (β:πβΆβ0 β π:πβΆβ0)) |
8 | | simpl 482 |
. . . . . . . . . . . . . . . . 17
β’ ((β = π β§ π β π) β β = π) |
9 | 8 | fveq1d 6893 |
. . . . . . . . . . . . . . . 16
β’ ((β = π β§ π β π) β (ββπ) = (πβπ)) |
10 | 9 | sumeq2dv 15673 |
. . . . . . . . . . . . . . 15
β’ (β = π β Ξ£π β π (ββπ) = Ξ£π β π (πβπ)) |
11 | 10 | eqeq1d 2729 |
. . . . . . . . . . . . . 14
β’ (β = π β (Ξ£π β π (ββπ) = π β Ξ£π β π (πβπ) = π)) |
12 | 7, 11 | anbi12d 630 |
. . . . . . . . . . . . 13
β’ (β = π β ((β:πβΆβ0 β§
Ξ£π β π (ββπ) = π) β (π:πβΆβ0 β§
Ξ£π β π (πβπ) = π))) |
13 | 6, 12 | elab 3665 |
. . . . . . . . . . . 12
β’ (π β {β β£ (β:πβΆβ0 β§
Ξ£π β π (ββπ) = π)} β (π:πβΆβ0 β§
Ξ£π β π (πβπ) = π)) |
14 | 5, 13 | sylib 217 |
. . . . . . . . . . 11
β’ ((π β§ π β π΅) β (π:πβΆβ0 β§
Ξ£π β π (πβπ) = π)) |
15 | 14 | simpld 494 |
. . . . . . . . . 10
β’ ((π β§ π β π΅) β π:πβΆβ0) |
16 | 15 | adantr 480 |
. . . . . . . . 9
β’ (((π β§ π β π΅) β§ π¦ β (1...πΎ)) β π:πβΆβ0) |
17 | 16 | 3impa 1108 |
. . . . . . . 8
β’ ((π β§ π β π΅ β§ π¦ β (1...πΎ)) β π:πβΆβ0) |
18 | | sticksstones17.5 |
. . . . . . . . . . . . 13
β’ (π β π:(1...πΎ)β1-1-ontoβπ) |
19 | | f1of 6833 |
. . . . . . . . . . . . 13
β’ (π:(1...πΎ)β1-1-ontoβπ β π:(1...πΎ)βΆπ) |
20 | 18, 19 | syl 17 |
. . . . . . . . . . . 12
β’ (π β π:(1...πΎ)βΆπ) |
21 | 20 | adantr 480 |
. . . . . . . . . . 11
β’ ((π β§ π β π΅) β π:(1...πΎ)βΆπ) |
22 | 21 | adantr 480 |
. . . . . . . . . 10
β’ (((π β§ π β π΅) β§ π¦ β (1...πΎ)) β π:(1...πΎ)βΆπ) |
23 | 22 | 3impa 1108 |
. . . . . . . . 9
β’ ((π β§ π β π΅ β§ π¦ β (1...πΎ)) β π:(1...πΎ)βΆπ) |
24 | | simp3 1136 |
. . . . . . . . 9
β’ ((π β§ π β π΅ β§ π¦ β (1...πΎ)) β π¦ β (1...πΎ)) |
25 | 23, 24 | ffvelcdmd 7089 |
. . . . . . . 8
β’ ((π β§ π β π΅ β§ π¦ β (1...πΎ)) β (πβπ¦) β π) |
26 | 17, 25 | ffvelcdmd 7089 |
. . . . . . 7
β’ ((π β§ π β π΅ β§ π¦ β (1...πΎ)) β (πβ(πβπ¦)) β
β0) |
27 | 26 | 3expa 1116 |
. . . . . 6
β’ (((π β§ π β π΅) β§ π¦ β (1...πΎ)) β (πβ(πβπ¦)) β
β0) |
28 | 27 | fmpttd 7119 |
. . . . 5
β’ ((π β§ π β π΅) β (π¦ β (1...πΎ) β¦ (πβ(πβπ¦))):(1...πΎ)βΆβ0) |
29 | | eqidd 2728 |
. . . . . . . 8
β’ (((π β§ π β π΅) β§ π β (1...πΎ)) β (π¦ β (1...πΎ) β¦ (πβ(πβπ¦))) = (π¦ β (1...πΎ) β¦ (πβ(πβπ¦)))) |
30 | | simpr 484 |
. . . . . . . . . 10
β’ ((((π β§ π β π΅) β§ π β (1...πΎ)) β§ π¦ = π) β π¦ = π) |
31 | 30 | fveq2d 6895 |
. . . . . . . . 9
β’ ((((π β§ π β π΅) β§ π β (1...πΎ)) β§ π¦ = π) β (πβπ¦) = (πβπ)) |
32 | 31 | fveq2d 6895 |
. . . . . . . 8
β’ ((((π β§ π β π΅) β§ π β (1...πΎ)) β§ π¦ = π) β (πβ(πβπ¦)) = (πβ(πβπ))) |
33 | | simpr 484 |
. . . . . . . 8
β’ (((π β§ π β π΅) β§ π β (1...πΎ)) β π β (1...πΎ)) |
34 | | fvexd 6906 |
. . . . . . . 8
β’ (((π β§ π β π΅) β§ π β (1...πΎ)) β (πβ(πβπ)) β V) |
35 | 29, 32, 33, 34 | fvmptd 7006 |
. . . . . . 7
β’ (((π β§ π β π΅) β§ π β (1...πΎ)) β ((π¦ β (1...πΎ) β¦ (πβ(πβπ¦)))βπ) = (πβ(πβπ))) |
36 | 35 | sumeq2dv 15673 |
. . . . . 6
β’ ((π β§ π β π΅) β Ξ£π β (1...πΎ)((π¦ β (1...πΎ) β¦ (πβ(πβπ¦)))βπ) = Ξ£π β (1...πΎ)(πβ(πβπ))) |
37 | | fveq2 6891 |
. . . . . . . . 9
β’ (π = (πβπ) β (πβπ ) = (πβ(πβπ))) |
38 | | fzfi 13961 |
. . . . . . . . . 10
β’
(1...πΎ) β
Fin |
39 | 38 | a1i 11 |
. . . . . . . . 9
β’ ((π β§ π β π΅) β (1...πΎ) β Fin) |
40 | 18 | adantr 480 |
. . . . . . . . 9
β’ ((π β§ π β π΅) β π:(1...πΎ)β1-1-ontoβπ) |
41 | | eqidd 2728 |
. . . . . . . . 9
β’ (((π β§ π β π΅) β§ π β (1...πΎ)) β (πβπ) = (πβπ)) |
42 | | nn0sscn 12499 |
. . . . . . . . . . . 12
β’
β0 β β |
43 | 42 | a1i 11 |
. . . . . . . . . . 11
β’ ((π β§ π β π΅) β β0 β
β) |
44 | | fss 6733 |
. . . . . . . . . . 11
β’ ((π:πβΆβ0 β§
β0 β β) β π:πβΆβ) |
45 | 15, 43, 44 | syl2anc 583 |
. . . . . . . . . 10
β’ ((π β§ π β π΅) β π:πβΆβ) |
46 | 45 | ffvelcdmda 7088 |
. . . . . . . . 9
β’ (((π β§ π β π΅) β§ π β π) β (πβπ ) β β) |
47 | 37, 39, 40, 41, 46 | fsumf1o 15693 |
. . . . . . . 8
β’ ((π β§ π β π΅) β Ξ£π β π (πβπ ) = Ξ£π β (1...πΎ)(πβ(πβπ))) |
48 | 47 | eqcomd 2733 |
. . . . . . 7
β’ ((π β§ π β π΅) β Ξ£π β (1...πΎ)(πβ(πβπ)) = Ξ£π β π (πβπ )) |
49 | | fveq2 6891 |
. . . . . . . . . 10
β’ (π = π β (πβπ ) = (πβπ)) |
50 | 49 | cbvsumv 15666 |
. . . . . . . . 9
β’
Ξ£π β
π (πβπ ) = Ξ£π β π (πβπ) |
51 | 50 | a1i 11 |
. . . . . . . 8
β’ ((π β§ π β π΅) β Ξ£π β π (πβπ ) = Ξ£π β π (πβπ)) |
52 | 14 | simprd 495 |
. . . . . . . 8
β’ ((π β§ π β π΅) β Ξ£π β π (πβπ) = π) |
53 | 51, 52 | eqtrd 2767 |
. . . . . . 7
β’ ((π β§ π β π΅) β Ξ£π β π (πβπ ) = π) |
54 | 48, 53 | eqtrd 2767 |
. . . . . 6
β’ ((π β§ π β π΅) β Ξ£π β (1...πΎ)(πβ(πβπ)) = π) |
55 | 36, 54 | eqtrd 2767 |
. . . . 5
β’ ((π β§ π β π΅) β Ξ£π β (1...πΎ)((π¦ β (1...πΎ) β¦ (πβ(πβπ¦)))βπ) = π) |
56 | 28, 55 | jca 511 |
. . . 4
β’ ((π β§ π β π΅) β ((π¦ β (1...πΎ) β¦ (πβ(πβπ¦))):(1...πΎ)βΆβ0 β§
Ξ£π β (1...πΎ)((π¦ β (1...πΎ) β¦ (πβ(πβπ¦)))βπ) = π)) |
57 | | fzfid 13962 |
. . . . . 6
β’ ((π β§ π β π΅) β (1...πΎ) β Fin) |
58 | 57 | mptexd 7230 |
. . . . 5
β’ ((π β§ π β π΅) β (π¦ β (1...πΎ) β¦ (πβ(πβπ¦))) β V) |
59 | | feq1 6697 |
. . . . . . 7
β’ (π = (π¦ β (1...πΎ) β¦ (πβ(πβπ¦))) β (π:(1...πΎ)βΆβ0 β (π¦ β (1...πΎ) β¦ (πβ(πβπ¦))):(1...πΎ)βΆβ0)) |
60 | | simpl 482 |
. . . . . . . . . 10
β’ ((π = (π¦ β (1...πΎ) β¦ (πβ(πβπ¦))) β§ π β (1...πΎ)) β π = (π¦ β (1...πΎ) β¦ (πβ(πβπ¦)))) |
61 | 60 | fveq1d 6893 |
. . . . . . . . 9
β’ ((π = (π¦ β (1...πΎ) β¦ (πβ(πβπ¦))) β§ π β (1...πΎ)) β (πβπ) = ((π¦ β (1...πΎ) β¦ (πβ(πβπ¦)))βπ)) |
62 | 61 | sumeq2dv 15673 |
. . . . . . . 8
β’ (π = (π¦ β (1...πΎ) β¦ (πβ(πβπ¦))) β Ξ£π β (1...πΎ)(πβπ) = Ξ£π β (1...πΎ)((π¦ β (1...πΎ) β¦ (πβ(πβπ¦)))βπ)) |
63 | 62 | eqeq1d 2729 |
. . . . . . 7
β’ (π = (π¦ β (1...πΎ) β¦ (πβ(πβπ¦))) β (Ξ£π β (1...πΎ)(πβπ) = π β Ξ£π β (1...πΎ)((π¦ β (1...πΎ) β¦ (πβ(πβπ¦)))βπ) = π)) |
64 | 59, 63 | anbi12d 630 |
. . . . . 6
β’ (π = (π¦ β (1...πΎ) β¦ (πβ(πβπ¦))) β ((π:(1...πΎ)βΆβ0 β§
Ξ£π β (1...πΎ)(πβπ) = π) β ((π¦ β (1...πΎ) β¦ (πβ(πβπ¦))):(1...πΎ)βΆβ0 β§
Ξ£π β (1...πΎ)((π¦ β (1...πΎ) β¦ (πβ(πβπ¦)))βπ) = π))) |
65 | 64 | elabg 3663 |
. . . . 5
β’ ((π¦ β (1...πΎ) β¦ (πβ(πβπ¦))) β V β ((π¦ β (1...πΎ) β¦ (πβ(πβπ¦))) β {π β£ (π:(1...πΎ)βΆβ0 β§
Ξ£π β (1...πΎ)(πβπ) = π)} β ((π¦ β (1...πΎ) β¦ (πβ(πβπ¦))):(1...πΎ)βΆβ0 β§
Ξ£π β (1...πΎ)((π¦ β (1...πΎ) β¦ (πβ(πβπ¦)))βπ) = π))) |
66 | 58, 65 | syl 17 |
. . . 4
β’ ((π β§ π β π΅) β ((π¦ β (1...πΎ) β¦ (πβ(πβπ¦))) β {π β£ (π:(1...πΎ)βΆβ0 β§
Ξ£π β (1...πΎ)(πβπ) = π)} β ((π¦ β (1...πΎ) β¦ (πβ(πβπ¦))):(1...πΎ)βΆβ0 β§
Ξ£π β (1...πΎ)((π¦ β (1...πΎ) β¦ (πβ(πβπ¦)))βπ) = π))) |
67 | 56, 66 | mpbird 257 |
. . 3
β’ ((π β§ π β π΅) β (π¦ β (1...πΎ) β¦ (πβ(πβπ¦))) β {π β£ (π:(1...πΎ)βΆβ0 β§
Ξ£π β (1...πΎ)(πβπ) = π)}) |
68 | | sticksstones17.3 |
. . . 4
β’ π΄ = {π β£ (π:(1...πΎ)βΆβ0 β§
Ξ£π β (1...πΎ)(πβπ) = π)} |
69 | 68 | a1i 11 |
. . 3
β’ ((π β§ π β π΅) β π΄ = {π β£ (π:(1...πΎ)βΆβ0 β§
Ξ£π β (1...πΎ)(πβπ) = π)}) |
70 | 67, 69 | eleqtrrd 2831 |
. 2
β’ ((π β§ π β π΅) β (π¦ β (1...πΎ) β¦ (πβ(πβπ¦))) β π΄) |
71 | | sticksstones17.6 |
. 2
β’ πΊ = (π β π΅ β¦ (π¦ β (1...πΎ) β¦ (πβ(πβπ¦)))) |
72 | 70, 71 | fmptd 7118 |
1
β’ (π β πΊ:π΅βΆπ΄) |