Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sticksstones17 Structured version   Visualization version   GIF version

Theorem sticksstones17 42255
Description: Extend sticks and stones to finite sets, bijective builder. (Contributed by metakunt, 23-Oct-2024.)
Hypotheses
Ref Expression
sticksstones17.1 (𝜑𝑁 ∈ ℕ0)
sticksstones17.2 (𝜑𝐾 ∈ ℕ0)
sticksstones17.3 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)}
sticksstones17.4 𝐵 = { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)}
sticksstones17.5 (𝜑𝑍:(1...𝐾)–1-1-onto𝑆)
sticksstones17.6 𝐺 = (𝑏𝐵 ↦ (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))))
Assertion
Ref Expression
sticksstones17 (𝜑𝐺:𝐵𝐴)
Distinct variable groups:   𝐴,𝑏   𝐵,𝑏,𝑖,𝑦   𝑔,𝐾,𝑖,𝑦   𝑔,𝑁   ,𝑁   𝑆,,𝑖   𝑔,𝑍,𝑖,𝑦   𝑔,𝑏   ,𝑏   𝜑,𝑏,𝑖,𝑦
Allowed substitution hints:   𝜑(𝑔,)   𝐴(𝑦,𝑔,,𝑖)   𝐵(𝑔,)   𝑆(𝑦,𝑔,𝑏)   𝐺(𝑦,𝑔,,𝑖,𝑏)   𝐾(,𝑏)   𝑁(𝑦,𝑖,𝑏)   𝑍(,𝑏)

Proof of Theorem sticksstones17
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 sticksstones17.4 . . . . . . . . . . . . . . . 16 𝐵 = { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)}
21eqimssi 3990 . . . . . . . . . . . . . . 15 𝐵 ⊆ { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)}
32a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐵 ⊆ { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)})
43sseld 3928 . . . . . . . . . . . . 13 (𝜑 → (𝑏𝐵𝑏 ∈ { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)}))
54imp 406 . . . . . . . . . . . 12 ((𝜑𝑏𝐵) → 𝑏 ∈ { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)})
6 vex 3440 . . . . . . . . . . . . 13 𝑏 ∈ V
7 feq1 6629 . . . . . . . . . . . . . 14 ( = 𝑏 → (:𝑆⟶ℕ0𝑏:𝑆⟶ℕ0))
8 simpl 482 . . . . . . . . . . . . . . . . 17 (( = 𝑏𝑖𝑆) → = 𝑏)
98fveq1d 6824 . . . . . . . . . . . . . . . 16 (( = 𝑏𝑖𝑆) → (𝑖) = (𝑏𝑖))
109sumeq2dv 15609 . . . . . . . . . . . . . . 15 ( = 𝑏 → Σ𝑖𝑆 (𝑖) = Σ𝑖𝑆 (𝑏𝑖))
1110eqeq1d 2733 . . . . . . . . . . . . . 14 ( = 𝑏 → (Σ𝑖𝑆 (𝑖) = 𝑁 ↔ Σ𝑖𝑆 (𝑏𝑖) = 𝑁))
127, 11anbi12d 632 . . . . . . . . . . . . 13 ( = 𝑏 → ((:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁) ↔ (𝑏:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑏𝑖) = 𝑁)))
136, 12elab 3630 . . . . . . . . . . . 12 (𝑏 ∈ { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)} ↔ (𝑏:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑏𝑖) = 𝑁))
145, 13sylib 218 . . . . . . . . . . 11 ((𝜑𝑏𝐵) → (𝑏:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑏𝑖) = 𝑁))
1514simpld 494 . . . . . . . . . 10 ((𝜑𝑏𝐵) → 𝑏:𝑆⟶ℕ0)
1615adantr 480 . . . . . . . . 9 (((𝜑𝑏𝐵) ∧ 𝑦 ∈ (1...𝐾)) → 𝑏:𝑆⟶ℕ0)
17163impa 1109 . . . . . . . 8 ((𝜑𝑏𝐵𝑦 ∈ (1...𝐾)) → 𝑏:𝑆⟶ℕ0)
18 sticksstones17.5 . . . . . . . . . . . . 13 (𝜑𝑍:(1...𝐾)–1-1-onto𝑆)
19 f1of 6763 . . . . . . . . . . . . 13 (𝑍:(1...𝐾)–1-1-onto𝑆𝑍:(1...𝐾)⟶𝑆)
2018, 19syl 17 . . . . . . . . . . . 12 (𝜑𝑍:(1...𝐾)⟶𝑆)
2120adantr 480 . . . . . . . . . . 11 ((𝜑𝑏𝐵) → 𝑍:(1...𝐾)⟶𝑆)
2221adantr 480 . . . . . . . . . 10 (((𝜑𝑏𝐵) ∧ 𝑦 ∈ (1...𝐾)) → 𝑍:(1...𝐾)⟶𝑆)
23223impa 1109 . . . . . . . . 9 ((𝜑𝑏𝐵𝑦 ∈ (1...𝐾)) → 𝑍:(1...𝐾)⟶𝑆)
24 simp3 1138 . . . . . . . . 9 ((𝜑𝑏𝐵𝑦 ∈ (1...𝐾)) → 𝑦 ∈ (1...𝐾))
2523, 24ffvelcdmd 7018 . . . . . . . 8 ((𝜑𝑏𝐵𝑦 ∈ (1...𝐾)) → (𝑍𝑦) ∈ 𝑆)
2617, 25ffvelcdmd 7018 . . . . . . 7 ((𝜑𝑏𝐵𝑦 ∈ (1...𝐾)) → (𝑏‘(𝑍𝑦)) ∈ ℕ0)
27263expa 1118 . . . . . 6 (((𝜑𝑏𝐵) ∧ 𝑦 ∈ (1...𝐾)) → (𝑏‘(𝑍𝑦)) ∈ ℕ0)
2827fmpttd 7048 . . . . 5 ((𝜑𝑏𝐵) → (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))):(1...𝐾)⟶ℕ0)
29 eqidd 2732 . . . . . . . 8 (((𝜑𝑏𝐵) ∧ 𝑖 ∈ (1...𝐾)) → (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))) = (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))))
30 simpr 484 . . . . . . . . . 10 ((((𝜑𝑏𝐵) ∧ 𝑖 ∈ (1...𝐾)) ∧ 𝑦 = 𝑖) → 𝑦 = 𝑖)
3130fveq2d 6826 . . . . . . . . 9 ((((𝜑𝑏𝐵) ∧ 𝑖 ∈ (1...𝐾)) ∧ 𝑦 = 𝑖) → (𝑍𝑦) = (𝑍𝑖))
3231fveq2d 6826 . . . . . . . 8 ((((𝜑𝑏𝐵) ∧ 𝑖 ∈ (1...𝐾)) ∧ 𝑦 = 𝑖) → (𝑏‘(𝑍𝑦)) = (𝑏‘(𝑍𝑖)))
33 simpr 484 . . . . . . . 8 (((𝜑𝑏𝐵) ∧ 𝑖 ∈ (1...𝐾)) → 𝑖 ∈ (1...𝐾))
34 fvexd 6837 . . . . . . . 8 (((𝜑𝑏𝐵) ∧ 𝑖 ∈ (1...𝐾)) → (𝑏‘(𝑍𝑖)) ∈ V)
3529, 32, 33, 34fvmptd 6936 . . . . . . 7 (((𝜑𝑏𝐵) ∧ 𝑖 ∈ (1...𝐾)) → ((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦)))‘𝑖) = (𝑏‘(𝑍𝑖)))
3635sumeq2dv 15609 . . . . . 6 ((𝜑𝑏𝐵) → Σ𝑖 ∈ (1...𝐾)((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦)))‘𝑖) = Σ𝑖 ∈ (1...𝐾)(𝑏‘(𝑍𝑖)))
37 fveq2 6822 . . . . . . . . 9 (𝑠 = (𝑍𝑖) → (𝑏𝑠) = (𝑏‘(𝑍𝑖)))
38 fzfi 13879 . . . . . . . . . 10 (1...𝐾) ∈ Fin
3938a1i 11 . . . . . . . . 9 ((𝜑𝑏𝐵) → (1...𝐾) ∈ Fin)
4018adantr 480 . . . . . . . . 9 ((𝜑𝑏𝐵) → 𝑍:(1...𝐾)–1-1-onto𝑆)
41 eqidd 2732 . . . . . . . . 9 (((𝜑𝑏𝐵) ∧ 𝑖 ∈ (1...𝐾)) → (𝑍𝑖) = (𝑍𝑖))
42 nn0sscn 12386 . . . . . . . . . . . 12 0 ⊆ ℂ
4342a1i 11 . . . . . . . . . . 11 ((𝜑𝑏𝐵) → ℕ0 ⊆ ℂ)
44 fss 6667 . . . . . . . . . . 11 ((𝑏:𝑆⟶ℕ0 ∧ ℕ0 ⊆ ℂ) → 𝑏:𝑆⟶ℂ)
4515, 43, 44syl2anc 584 . . . . . . . . . 10 ((𝜑𝑏𝐵) → 𝑏:𝑆⟶ℂ)
4645ffvelcdmda 7017 . . . . . . . . 9 (((𝜑𝑏𝐵) ∧ 𝑠𝑆) → (𝑏𝑠) ∈ ℂ)
4737, 39, 40, 41, 46fsumf1o 15630 . . . . . . . 8 ((𝜑𝑏𝐵) → Σ𝑠𝑆 (𝑏𝑠) = Σ𝑖 ∈ (1...𝐾)(𝑏‘(𝑍𝑖)))
4847eqcomd 2737 . . . . . . 7 ((𝜑𝑏𝐵) → Σ𝑖 ∈ (1...𝐾)(𝑏‘(𝑍𝑖)) = Σ𝑠𝑆 (𝑏𝑠))
49 fveq2 6822 . . . . . . . . . 10 (𝑠 = 𝑖 → (𝑏𝑠) = (𝑏𝑖))
5049cbvsumv 15603 . . . . . . . . 9 Σ𝑠𝑆 (𝑏𝑠) = Σ𝑖𝑆 (𝑏𝑖)
5150a1i 11 . . . . . . . 8 ((𝜑𝑏𝐵) → Σ𝑠𝑆 (𝑏𝑠) = Σ𝑖𝑆 (𝑏𝑖))
5214simprd 495 . . . . . . . 8 ((𝜑𝑏𝐵) → Σ𝑖𝑆 (𝑏𝑖) = 𝑁)
5351, 52eqtrd 2766 . . . . . . 7 ((𝜑𝑏𝐵) → Σ𝑠𝑆 (𝑏𝑠) = 𝑁)
5448, 53eqtrd 2766 . . . . . 6 ((𝜑𝑏𝐵) → Σ𝑖 ∈ (1...𝐾)(𝑏‘(𝑍𝑖)) = 𝑁)
5536, 54eqtrd 2766 . . . . 5 ((𝜑𝑏𝐵) → Σ𝑖 ∈ (1...𝐾)((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦)))‘𝑖) = 𝑁)
5628, 55jca 511 . . . 4 ((𝜑𝑏𝐵) → ((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))):(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦)))‘𝑖) = 𝑁))
57 fzfid 13880 . . . . . 6 ((𝜑𝑏𝐵) → (1...𝐾) ∈ Fin)
5857mptexd 7158 . . . . 5 ((𝜑𝑏𝐵) → (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))) ∈ V)
59 feq1 6629 . . . . . . 7 (𝑔 = (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))) → (𝑔:(1...𝐾)⟶ℕ0 ↔ (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))):(1...𝐾)⟶ℕ0))
60 simpl 482 . . . . . . . . . 10 ((𝑔 = (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))) ∧ 𝑖 ∈ (1...𝐾)) → 𝑔 = (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))))
6160fveq1d 6824 . . . . . . . . 9 ((𝑔 = (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))) ∧ 𝑖 ∈ (1...𝐾)) → (𝑔𝑖) = ((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦)))‘𝑖))
6261sumeq2dv 15609 . . . . . . . 8 (𝑔 = (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))) → Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = Σ𝑖 ∈ (1...𝐾)((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦)))‘𝑖))
6362eqeq1d 2733 . . . . . . 7 (𝑔 = (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))) → (Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁 ↔ Σ𝑖 ∈ (1...𝐾)((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦)))‘𝑖) = 𝑁))
6459, 63anbi12d 632 . . . . . 6 (𝑔 = (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))) → ((𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁) ↔ ((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))):(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦)))‘𝑖) = 𝑁)))
6564elabg 3627 . . . . 5 ((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))) ∈ V → ((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))) ∈ {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)} ↔ ((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))):(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦)))‘𝑖) = 𝑁)))
6658, 65syl 17 . . . 4 ((𝜑𝑏𝐵) → ((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))) ∈ {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)} ↔ ((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))):(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦)))‘𝑖) = 𝑁)))
6756, 66mpbird 257 . . 3 ((𝜑𝑏𝐵) → (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))) ∈ {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)})
68 sticksstones17.3 . . . 4 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)}
6968a1i 11 . . 3 ((𝜑𝑏𝐵) → 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)})
7067, 69eleqtrrd 2834 . 2 ((𝜑𝑏𝐵) → (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))) ∈ 𝐴)
71 sticksstones17.6 . 2 𝐺 = (𝑏𝐵 ↦ (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))))
7270, 71fmptd 7047 1 (𝜑𝐺:𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  {cab 2709  Vcvv 3436  wss 3897  cmpt 5170  wf 6477  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  Fincfn 8869  cc 11004  1c1 11007  0cn0 12381  ...cfz 13407  Σcsu 15593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594
This theorem is referenced by:  sticksstones19  42257
  Copyright terms: Public domain W3C validator