Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sticksstones17 Structured version   Visualization version   GIF version

Theorem sticksstones17 42120
Description: Extend sticks and stones to finite sets, bijective builder. (Contributed by metakunt, 23-Oct-2024.)
Hypotheses
Ref Expression
sticksstones17.1 (𝜑𝑁 ∈ ℕ0)
sticksstones17.2 (𝜑𝐾 ∈ ℕ0)
sticksstones17.3 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)}
sticksstones17.4 𝐵 = { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)}
sticksstones17.5 (𝜑𝑍:(1...𝐾)–1-1-onto𝑆)
sticksstones17.6 𝐺 = (𝑏𝐵 ↦ (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))))
Assertion
Ref Expression
sticksstones17 (𝜑𝐺:𝐵𝐴)
Distinct variable groups:   𝐴,𝑏   𝐵,𝑏,𝑖,𝑦   𝑔,𝐾,𝑖,𝑦   𝑔,𝑁   ,𝑁   𝑆,,𝑖   𝑔,𝑍,𝑖,𝑦   𝑔,𝑏   ,𝑏   𝜑,𝑏,𝑖,𝑦
Allowed substitution hints:   𝜑(𝑔,)   𝐴(𝑦,𝑔,,𝑖)   𝐵(𝑔,)   𝑆(𝑦,𝑔,𝑏)   𝐺(𝑦,𝑔,,𝑖,𝑏)   𝐾(,𝑏)   𝑁(𝑦,𝑖,𝑏)   𝑍(,𝑏)

Proof of Theorem sticksstones17
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 sticksstones17.4 . . . . . . . . . . . . . . . 16 𝐵 = { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)}
21eqimssi 4069 . . . . . . . . . . . . . . 15 𝐵 ⊆ { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)}
32a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐵 ⊆ { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)})
43sseld 4007 . . . . . . . . . . . . 13 (𝜑 → (𝑏𝐵𝑏 ∈ { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)}))
54imp 406 . . . . . . . . . . . 12 ((𝜑𝑏𝐵) → 𝑏 ∈ { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)})
6 vex 3492 . . . . . . . . . . . . 13 𝑏 ∈ V
7 feq1 6728 . . . . . . . . . . . . . 14 ( = 𝑏 → (:𝑆⟶ℕ0𝑏:𝑆⟶ℕ0))
8 simpl 482 . . . . . . . . . . . . . . . . 17 (( = 𝑏𝑖𝑆) → = 𝑏)
98fveq1d 6922 . . . . . . . . . . . . . . . 16 (( = 𝑏𝑖𝑆) → (𝑖) = (𝑏𝑖))
109sumeq2dv 15750 . . . . . . . . . . . . . . 15 ( = 𝑏 → Σ𝑖𝑆 (𝑖) = Σ𝑖𝑆 (𝑏𝑖))
1110eqeq1d 2742 . . . . . . . . . . . . . 14 ( = 𝑏 → (Σ𝑖𝑆 (𝑖) = 𝑁 ↔ Σ𝑖𝑆 (𝑏𝑖) = 𝑁))
127, 11anbi12d 631 . . . . . . . . . . . . 13 ( = 𝑏 → ((:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁) ↔ (𝑏:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑏𝑖) = 𝑁)))
136, 12elab 3694 . . . . . . . . . . . 12 (𝑏 ∈ { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)} ↔ (𝑏:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑏𝑖) = 𝑁))
145, 13sylib 218 . . . . . . . . . . 11 ((𝜑𝑏𝐵) → (𝑏:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑏𝑖) = 𝑁))
1514simpld 494 . . . . . . . . . 10 ((𝜑𝑏𝐵) → 𝑏:𝑆⟶ℕ0)
1615adantr 480 . . . . . . . . 9 (((𝜑𝑏𝐵) ∧ 𝑦 ∈ (1...𝐾)) → 𝑏:𝑆⟶ℕ0)
17163impa 1110 . . . . . . . 8 ((𝜑𝑏𝐵𝑦 ∈ (1...𝐾)) → 𝑏:𝑆⟶ℕ0)
18 sticksstones17.5 . . . . . . . . . . . . 13 (𝜑𝑍:(1...𝐾)–1-1-onto𝑆)
19 f1of 6862 . . . . . . . . . . . . 13 (𝑍:(1...𝐾)–1-1-onto𝑆𝑍:(1...𝐾)⟶𝑆)
2018, 19syl 17 . . . . . . . . . . . 12 (𝜑𝑍:(1...𝐾)⟶𝑆)
2120adantr 480 . . . . . . . . . . 11 ((𝜑𝑏𝐵) → 𝑍:(1...𝐾)⟶𝑆)
2221adantr 480 . . . . . . . . . 10 (((𝜑𝑏𝐵) ∧ 𝑦 ∈ (1...𝐾)) → 𝑍:(1...𝐾)⟶𝑆)
23223impa 1110 . . . . . . . . 9 ((𝜑𝑏𝐵𝑦 ∈ (1...𝐾)) → 𝑍:(1...𝐾)⟶𝑆)
24 simp3 1138 . . . . . . . . 9 ((𝜑𝑏𝐵𝑦 ∈ (1...𝐾)) → 𝑦 ∈ (1...𝐾))
2523, 24ffvelcdmd 7119 . . . . . . . 8 ((𝜑𝑏𝐵𝑦 ∈ (1...𝐾)) → (𝑍𝑦) ∈ 𝑆)
2617, 25ffvelcdmd 7119 . . . . . . 7 ((𝜑𝑏𝐵𝑦 ∈ (1...𝐾)) → (𝑏‘(𝑍𝑦)) ∈ ℕ0)
27263expa 1118 . . . . . 6 (((𝜑𝑏𝐵) ∧ 𝑦 ∈ (1...𝐾)) → (𝑏‘(𝑍𝑦)) ∈ ℕ0)
2827fmpttd 7149 . . . . 5 ((𝜑𝑏𝐵) → (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))):(1...𝐾)⟶ℕ0)
29 eqidd 2741 . . . . . . . 8 (((𝜑𝑏𝐵) ∧ 𝑖 ∈ (1...𝐾)) → (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))) = (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))))
30 simpr 484 . . . . . . . . . 10 ((((𝜑𝑏𝐵) ∧ 𝑖 ∈ (1...𝐾)) ∧ 𝑦 = 𝑖) → 𝑦 = 𝑖)
3130fveq2d 6924 . . . . . . . . 9 ((((𝜑𝑏𝐵) ∧ 𝑖 ∈ (1...𝐾)) ∧ 𝑦 = 𝑖) → (𝑍𝑦) = (𝑍𝑖))
3231fveq2d 6924 . . . . . . . 8 ((((𝜑𝑏𝐵) ∧ 𝑖 ∈ (1...𝐾)) ∧ 𝑦 = 𝑖) → (𝑏‘(𝑍𝑦)) = (𝑏‘(𝑍𝑖)))
33 simpr 484 . . . . . . . 8 (((𝜑𝑏𝐵) ∧ 𝑖 ∈ (1...𝐾)) → 𝑖 ∈ (1...𝐾))
34 fvexd 6935 . . . . . . . 8 (((𝜑𝑏𝐵) ∧ 𝑖 ∈ (1...𝐾)) → (𝑏‘(𝑍𝑖)) ∈ V)
3529, 32, 33, 34fvmptd 7036 . . . . . . 7 (((𝜑𝑏𝐵) ∧ 𝑖 ∈ (1...𝐾)) → ((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦)))‘𝑖) = (𝑏‘(𝑍𝑖)))
3635sumeq2dv 15750 . . . . . 6 ((𝜑𝑏𝐵) → Σ𝑖 ∈ (1...𝐾)((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦)))‘𝑖) = Σ𝑖 ∈ (1...𝐾)(𝑏‘(𝑍𝑖)))
37 fveq2 6920 . . . . . . . . 9 (𝑠 = (𝑍𝑖) → (𝑏𝑠) = (𝑏‘(𝑍𝑖)))
38 fzfi 14023 . . . . . . . . . 10 (1...𝐾) ∈ Fin
3938a1i 11 . . . . . . . . 9 ((𝜑𝑏𝐵) → (1...𝐾) ∈ Fin)
4018adantr 480 . . . . . . . . 9 ((𝜑𝑏𝐵) → 𝑍:(1...𝐾)–1-1-onto𝑆)
41 eqidd 2741 . . . . . . . . 9 (((𝜑𝑏𝐵) ∧ 𝑖 ∈ (1...𝐾)) → (𝑍𝑖) = (𝑍𝑖))
42 nn0sscn 12558 . . . . . . . . . . . 12 0 ⊆ ℂ
4342a1i 11 . . . . . . . . . . 11 ((𝜑𝑏𝐵) → ℕ0 ⊆ ℂ)
44 fss 6763 . . . . . . . . . . 11 ((𝑏:𝑆⟶ℕ0 ∧ ℕ0 ⊆ ℂ) → 𝑏:𝑆⟶ℂ)
4515, 43, 44syl2anc 583 . . . . . . . . . 10 ((𝜑𝑏𝐵) → 𝑏:𝑆⟶ℂ)
4645ffvelcdmda 7118 . . . . . . . . 9 (((𝜑𝑏𝐵) ∧ 𝑠𝑆) → (𝑏𝑠) ∈ ℂ)
4737, 39, 40, 41, 46fsumf1o 15771 . . . . . . . 8 ((𝜑𝑏𝐵) → Σ𝑠𝑆 (𝑏𝑠) = Σ𝑖 ∈ (1...𝐾)(𝑏‘(𝑍𝑖)))
4847eqcomd 2746 . . . . . . 7 ((𝜑𝑏𝐵) → Σ𝑖 ∈ (1...𝐾)(𝑏‘(𝑍𝑖)) = Σ𝑠𝑆 (𝑏𝑠))
49 fveq2 6920 . . . . . . . . . 10 (𝑠 = 𝑖 → (𝑏𝑠) = (𝑏𝑖))
5049cbvsumv 15744 . . . . . . . . 9 Σ𝑠𝑆 (𝑏𝑠) = Σ𝑖𝑆 (𝑏𝑖)
5150a1i 11 . . . . . . . 8 ((𝜑𝑏𝐵) → Σ𝑠𝑆 (𝑏𝑠) = Σ𝑖𝑆 (𝑏𝑖))
5214simprd 495 . . . . . . . 8 ((𝜑𝑏𝐵) → Σ𝑖𝑆 (𝑏𝑖) = 𝑁)
5351, 52eqtrd 2780 . . . . . . 7 ((𝜑𝑏𝐵) → Σ𝑠𝑆 (𝑏𝑠) = 𝑁)
5448, 53eqtrd 2780 . . . . . 6 ((𝜑𝑏𝐵) → Σ𝑖 ∈ (1...𝐾)(𝑏‘(𝑍𝑖)) = 𝑁)
5536, 54eqtrd 2780 . . . . 5 ((𝜑𝑏𝐵) → Σ𝑖 ∈ (1...𝐾)((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦)))‘𝑖) = 𝑁)
5628, 55jca 511 . . . 4 ((𝜑𝑏𝐵) → ((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))):(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦)))‘𝑖) = 𝑁))
57 fzfid 14024 . . . . . 6 ((𝜑𝑏𝐵) → (1...𝐾) ∈ Fin)
5857mptexd 7261 . . . . 5 ((𝜑𝑏𝐵) → (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))) ∈ V)
59 feq1 6728 . . . . . . 7 (𝑔 = (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))) → (𝑔:(1...𝐾)⟶ℕ0 ↔ (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))):(1...𝐾)⟶ℕ0))
60 simpl 482 . . . . . . . . . 10 ((𝑔 = (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))) ∧ 𝑖 ∈ (1...𝐾)) → 𝑔 = (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))))
6160fveq1d 6922 . . . . . . . . 9 ((𝑔 = (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))) ∧ 𝑖 ∈ (1...𝐾)) → (𝑔𝑖) = ((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦)))‘𝑖))
6261sumeq2dv 15750 . . . . . . . 8 (𝑔 = (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))) → Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = Σ𝑖 ∈ (1...𝐾)((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦)))‘𝑖))
6362eqeq1d 2742 . . . . . . 7 (𝑔 = (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))) → (Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁 ↔ Σ𝑖 ∈ (1...𝐾)((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦)))‘𝑖) = 𝑁))
6459, 63anbi12d 631 . . . . . 6 (𝑔 = (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))) → ((𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁) ↔ ((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))):(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦)))‘𝑖) = 𝑁)))
6564elabg 3690 . . . . 5 ((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))) ∈ V → ((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))) ∈ {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)} ↔ ((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))):(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦)))‘𝑖) = 𝑁)))
6658, 65syl 17 . . . 4 ((𝜑𝑏𝐵) → ((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))) ∈ {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)} ↔ ((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))):(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)((𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦)))‘𝑖) = 𝑁)))
6756, 66mpbird 257 . . 3 ((𝜑𝑏𝐵) → (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))) ∈ {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)})
68 sticksstones17.3 . . . 4 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)}
6968a1i 11 . . 3 ((𝜑𝑏𝐵) → 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)})
7067, 69eleqtrrd 2847 . 2 ((𝜑𝑏𝐵) → (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))) ∈ 𝐴)
71 sticksstones17.6 . 2 𝐺 = (𝑏𝐵 ↦ (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))))
7270, 71fmptd 7148 1 (𝜑𝐺:𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  {cab 2717  Vcvv 3488  wss 3976  cmpt 5249  wf 6569  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  Fincfn 9003  cc 11182  1c1 11185  0cn0 12553  ...cfz 13567  Σcsu 15734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735
This theorem is referenced by:  sticksstones19  42122
  Copyright terms: Public domain W3C validator