Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sticksstones18 Structured version   Visualization version   GIF version

Theorem sticksstones18 42121
Description: Extend sticks and stones to finite sets, bijective builder. (Contributed by metakunt, 23-Oct-2024.)
Hypotheses
Ref Expression
sticksstones18.1 (𝜑𝑁 ∈ ℕ0)
sticksstones18.2 (𝜑𝐾 ∈ ℕ0)
sticksstones18.3 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)}
sticksstones18.4 𝐵 = { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)}
sticksstones18.5 (𝜑𝑍:(1...𝐾)–1-1-onto𝑆)
sticksstones18.6 𝐹 = (𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))))
Assertion
Ref Expression
sticksstones18 (𝜑𝐹:𝐴𝐵)
Distinct variable groups:   𝐴,𝑎,𝑖,𝑥   𝐵,𝑎   𝑔,𝐾,𝑖   𝑔,𝑁   ,𝑁   𝑆,,𝑖,𝑥   ,𝑍,𝑖,𝑥   𝑔,𝑎   ,𝑎   𝜑,𝑎,𝑖,𝑥
Allowed substitution hints:   𝜑(𝑔,)   𝐴(𝑔,)   𝐵(𝑥,𝑔,,𝑖)   𝑆(𝑔,𝑎)   𝐹(𝑥,𝑔,,𝑖,𝑎)   𝐾(𝑥,,𝑎)   𝑁(𝑥,𝑖,𝑎)   𝑍(𝑔,𝑎)

Proof of Theorem sticksstones18
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 sticksstones18.3 . . . . . . . . . . . . . 14 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)}
21eqimssi 4069 . . . . . . . . . . . . 13 𝐴 ⊆ {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)}
32a1i 11 . . . . . . . . . . . 12 (𝜑𝐴 ⊆ {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)})
43sseld 4007 . . . . . . . . . . 11 (𝜑 → (𝑎𝐴𝑎 ∈ {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)}))
54imp 406 . . . . . . . . . 10 ((𝜑𝑎𝐴) → 𝑎 ∈ {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)})
6 vex 3492 . . . . . . . . . . 11 𝑎 ∈ V
7 feq1 6728 . . . . . . . . . . . 12 (𝑔 = 𝑎 → (𝑔:(1...𝐾)⟶ℕ0𝑎:(1...𝐾)⟶ℕ0))
8 simpl 482 . . . . . . . . . . . . . . 15 ((𝑔 = 𝑎𝑖 ∈ (1...𝐾)) → 𝑔 = 𝑎)
98fveq1d 6922 . . . . . . . . . . . . . 14 ((𝑔 = 𝑎𝑖 ∈ (1...𝐾)) → (𝑔𝑖) = (𝑎𝑖))
109sumeq2dv 15750 . . . . . . . . . . . . 13 (𝑔 = 𝑎 → Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = Σ𝑖 ∈ (1...𝐾)(𝑎𝑖))
1110eqeq1d 2742 . . . . . . . . . . . 12 (𝑔 = 𝑎 → (Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁 ↔ Σ𝑖 ∈ (1...𝐾)(𝑎𝑖) = 𝑁))
127, 11anbi12d 631 . . . . . . . . . . 11 (𝑔 = 𝑎 → ((𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁) ↔ (𝑎:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑎𝑖) = 𝑁)))
136, 12elab 3694 . . . . . . . . . 10 (𝑎 ∈ {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)} ↔ (𝑎:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑎𝑖) = 𝑁))
145, 13sylib 218 . . . . . . . . 9 ((𝜑𝑎𝐴) → (𝑎:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑎𝑖) = 𝑁))
1514simpld 494 . . . . . . . 8 ((𝜑𝑎𝐴) → 𝑎:(1...𝐾)⟶ℕ0)
1615adantr 480 . . . . . . 7 (((𝜑𝑎𝐴) ∧ 𝑥𝑆) → 𝑎:(1...𝐾)⟶ℕ0)
17 sticksstones18.5 . . . . . . . . . . 11 (𝜑𝑍:(1...𝐾)–1-1-onto𝑆)
18 f1ocnv 6874 . . . . . . . . . . 11 (𝑍:(1...𝐾)–1-1-onto𝑆𝑍:𝑆1-1-onto→(1...𝐾))
1917, 18syl 17 . . . . . . . . . 10 (𝜑𝑍:𝑆1-1-onto→(1...𝐾))
20 f1of 6862 . . . . . . . . . 10 (𝑍:𝑆1-1-onto→(1...𝐾) → 𝑍:𝑆⟶(1...𝐾))
2119, 20syl 17 . . . . . . . . 9 (𝜑𝑍:𝑆⟶(1...𝐾))
2221adantr 480 . . . . . . . 8 ((𝜑𝑎𝐴) → 𝑍:𝑆⟶(1...𝐾))
2322ffvelcdmda 7118 . . . . . . 7 (((𝜑𝑎𝐴) ∧ 𝑥𝑆) → (𝑍𝑥) ∈ (1...𝐾))
2416, 23ffvelcdmd 7119 . . . . . 6 (((𝜑𝑎𝐴) ∧ 𝑥𝑆) → (𝑎‘(𝑍𝑥)) ∈ ℕ0)
2524fmpttd 7149 . . . . 5 ((𝜑𝑎𝐴) → (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))):𝑆⟶ℕ0)
26 eqidd 2741 . . . . . . . 8 (((𝜑𝑎𝐴) ∧ 𝑖𝑆) → (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))) = (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))))
27 simpr 484 . . . . . . . . . 10 ((((𝜑𝑎𝐴) ∧ 𝑖𝑆) ∧ 𝑥 = 𝑖) → 𝑥 = 𝑖)
2827fveq2d 6924 . . . . . . . . 9 ((((𝜑𝑎𝐴) ∧ 𝑖𝑆) ∧ 𝑥 = 𝑖) → (𝑍𝑥) = (𝑍𝑖))
2928fveq2d 6924 . . . . . . . 8 ((((𝜑𝑎𝐴) ∧ 𝑖𝑆) ∧ 𝑥 = 𝑖) → (𝑎‘(𝑍𝑥)) = (𝑎‘(𝑍𝑖)))
30 simpr 484 . . . . . . . 8 (((𝜑𝑎𝐴) ∧ 𝑖𝑆) → 𝑖𝑆)
31 fvexd 6935 . . . . . . . 8 (((𝜑𝑎𝐴) ∧ 𝑖𝑆) → (𝑎‘(𝑍𝑖)) ∈ V)
3226, 29, 30, 31fvmptd 7036 . . . . . . 7 (((𝜑𝑎𝐴) ∧ 𝑖𝑆) → ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥)))‘𝑖) = (𝑎‘(𝑍𝑖)))
3332sumeq2dv 15750 . . . . . 6 ((𝜑𝑎𝐴) → Σ𝑖𝑆 ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥)))‘𝑖) = Σ𝑖𝑆 (𝑎‘(𝑍𝑖)))
34 fveq2 6920 . . . . . . . . 9 (𝑛 = (𝑍𝑖) → (𝑎𝑛) = (𝑎‘(𝑍𝑖)))
35 fzfid 14024 . . . . . . . . . 10 ((𝜑𝑎𝐴) → (1...𝐾) ∈ Fin)
3617adantr 480 . . . . . . . . . . . 12 ((𝜑𝑎𝐴) → 𝑍:(1...𝐾)–1-1-onto𝑆)
37 f1oenfi 9245 . . . . . . . . . . . 12 (((1...𝐾) ∈ Fin ∧ 𝑍:(1...𝐾)–1-1-onto𝑆) → (1...𝐾) ≈ 𝑆)
3835, 36, 37syl2anc 583 . . . . . . . . . . 11 ((𝜑𝑎𝐴) → (1...𝐾) ≈ 𝑆)
3938ensymd 9065 . . . . . . . . . 10 ((𝜑𝑎𝐴) → 𝑆 ≈ (1...𝐾))
40 enfii 9252 . . . . . . . . . 10 (((1...𝐾) ∈ Fin ∧ 𝑆 ≈ (1...𝐾)) → 𝑆 ∈ Fin)
4135, 39, 40syl2anc 583 . . . . . . . . 9 ((𝜑𝑎𝐴) → 𝑆 ∈ Fin)
4219adantr 480 . . . . . . . . 9 ((𝜑𝑎𝐴) → 𝑍:𝑆1-1-onto→(1...𝐾))
43 eqidd 2741 . . . . . . . . 9 (((𝜑𝑎𝐴) ∧ 𝑖𝑆) → (𝑍𝑖) = (𝑍𝑖))
44 nn0sscn 12558 . . . . . . . . . . . 12 0 ⊆ ℂ
4544a1i 11 . . . . . . . . . . 11 ((𝜑𝑎𝐴) → ℕ0 ⊆ ℂ)
46 fss 6763 . . . . . . . . . . 11 ((𝑎:(1...𝐾)⟶ℕ0 ∧ ℕ0 ⊆ ℂ) → 𝑎:(1...𝐾)⟶ℂ)
4715, 45, 46syl2anc 583 . . . . . . . . . 10 ((𝜑𝑎𝐴) → 𝑎:(1...𝐾)⟶ℂ)
4847ffvelcdmda 7118 . . . . . . . . 9 (((𝜑𝑎𝐴) ∧ 𝑛 ∈ (1...𝐾)) → (𝑎𝑛) ∈ ℂ)
4934, 41, 42, 43, 48fsumf1o 15771 . . . . . . . 8 ((𝜑𝑎𝐴) → Σ𝑛 ∈ (1...𝐾)(𝑎𝑛) = Σ𝑖𝑆 (𝑎‘(𝑍𝑖)))
5049eqcomd 2746 . . . . . . 7 ((𝜑𝑎𝐴) → Σ𝑖𝑆 (𝑎‘(𝑍𝑖)) = Σ𝑛 ∈ (1...𝐾)(𝑎𝑛))
51 fveq2 6920 . . . . . . . . . 10 (𝑛 = 𝑖 → (𝑎𝑛) = (𝑎𝑖))
5251cbvsumv 15744 . . . . . . . . 9 Σ𝑛 ∈ (1...𝐾)(𝑎𝑛) = Σ𝑖 ∈ (1...𝐾)(𝑎𝑖)
5352a1i 11 . . . . . . . 8 ((𝜑𝑎𝐴) → Σ𝑛 ∈ (1...𝐾)(𝑎𝑛) = Σ𝑖 ∈ (1...𝐾)(𝑎𝑖))
5414simprd 495 . . . . . . . 8 ((𝜑𝑎𝐴) → Σ𝑖 ∈ (1...𝐾)(𝑎𝑖) = 𝑁)
5553, 54eqtrd 2780 . . . . . . 7 ((𝜑𝑎𝐴) → Σ𝑛 ∈ (1...𝐾)(𝑎𝑛) = 𝑁)
5650, 55eqtrd 2780 . . . . . 6 ((𝜑𝑎𝐴) → Σ𝑖𝑆 (𝑎‘(𝑍𝑖)) = 𝑁)
5733, 56eqtrd 2780 . . . . 5 ((𝜑𝑎𝐴) → Σ𝑖𝑆 ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥)))‘𝑖) = 𝑁)
5825, 57jca 511 . . . 4 ((𝜑𝑎𝐴) → ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))):𝑆⟶ℕ0 ∧ Σ𝑖𝑆 ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥)))‘𝑖) = 𝑁))
59 fzfid 14024 . . . . . . . 8 (𝜑 → (1...𝐾) ∈ Fin)
6059adantr 480 . . . . . . 7 ((𝜑𝑎𝐴) → (1...𝐾) ∈ Fin)
6159, 17, 37syl2anc 583 . . . . . . . . 9 (𝜑 → (1...𝐾) ≈ 𝑆)
6261ensymd 9065 . . . . . . . 8 (𝜑𝑆 ≈ (1...𝐾))
6362adantr 480 . . . . . . 7 ((𝜑𝑎𝐴) → 𝑆 ≈ (1...𝐾))
6460, 63, 40syl2anc 583 . . . . . 6 ((𝜑𝑎𝐴) → 𝑆 ∈ Fin)
6564mptexd 7261 . . . . 5 ((𝜑𝑎𝐴) → (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))) ∈ V)
66 feq1 6728 . . . . . . 7 ( = (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))) → (:𝑆⟶ℕ0 ↔ (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))):𝑆⟶ℕ0))
67 simpl 482 . . . . . . . . . 10 (( = (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))) ∧ 𝑖𝑆) → = (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))))
6867fveq1d 6922 . . . . . . . . 9 (( = (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))) ∧ 𝑖𝑆) → (𝑖) = ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥)))‘𝑖))
6968sumeq2dv 15750 . . . . . . . 8 ( = (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))) → Σ𝑖𝑆 (𝑖) = Σ𝑖𝑆 ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥)))‘𝑖))
7069eqeq1d 2742 . . . . . . 7 ( = (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))) → (Σ𝑖𝑆 (𝑖) = 𝑁 ↔ Σ𝑖𝑆 ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥)))‘𝑖) = 𝑁))
7166, 70anbi12d 631 . . . . . 6 ( = (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))) → ((:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁) ↔ ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))):𝑆⟶ℕ0 ∧ Σ𝑖𝑆 ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥)))‘𝑖) = 𝑁)))
7271elabg 3690 . . . . 5 ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))) ∈ V → ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))) ∈ { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)} ↔ ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))):𝑆⟶ℕ0 ∧ Σ𝑖𝑆 ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥)))‘𝑖) = 𝑁)))
7365, 72syl 17 . . . 4 ((𝜑𝑎𝐴) → ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))) ∈ { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)} ↔ ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))):𝑆⟶ℕ0 ∧ Σ𝑖𝑆 ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥)))‘𝑖) = 𝑁)))
7458, 73mpbird 257 . . 3 ((𝜑𝑎𝐴) → (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))) ∈ { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)})
75 sticksstones18.4 . . . 4 𝐵 = { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)}
7675a1i 11 . . 3 ((𝜑𝑎𝐴) → 𝐵 = { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)})
7774, 76eleqtrrd 2847 . 2 ((𝜑𝑎𝐴) → (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))) ∈ 𝐵)
78 sticksstones18.6 . 2 𝐹 = (𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))))
7977, 78fmptd 7148 1 (𝜑𝐹:𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  {cab 2717  Vcvv 3488  wss 3976   class class class wbr 5166  cmpt 5249  ccnv 5699  wf 6569  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  cen 9000  Fincfn 9003  cc 11182  1c1 11185  0cn0 12553  ...cfz 13567  Σcsu 15734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735
This theorem is referenced by:  sticksstones19  42122
  Copyright terms: Public domain W3C validator