Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sticksstones18 Structured version   Visualization version   GIF version

Theorem sticksstones18 42256
Description: Extend sticks and stones to finite sets, bijective builder. (Contributed by metakunt, 23-Oct-2024.)
Hypotheses
Ref Expression
sticksstones18.1 (𝜑𝑁 ∈ ℕ0)
sticksstones18.2 (𝜑𝐾 ∈ ℕ0)
sticksstones18.3 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)}
sticksstones18.4 𝐵 = { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)}
sticksstones18.5 (𝜑𝑍:(1...𝐾)–1-1-onto𝑆)
sticksstones18.6 𝐹 = (𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))))
Assertion
Ref Expression
sticksstones18 (𝜑𝐹:𝐴𝐵)
Distinct variable groups:   𝐴,𝑎,𝑖,𝑥   𝐵,𝑎   𝑔,𝐾,𝑖   𝑔,𝑁   ,𝑁   𝑆,,𝑖,𝑥   ,𝑍,𝑖,𝑥   𝑔,𝑎   ,𝑎   𝜑,𝑎,𝑖,𝑥
Allowed substitution hints:   𝜑(𝑔,)   𝐴(𝑔,)   𝐵(𝑥,𝑔,,𝑖)   𝑆(𝑔,𝑎)   𝐹(𝑥,𝑔,,𝑖,𝑎)   𝐾(𝑥,,𝑎)   𝑁(𝑥,𝑖,𝑎)   𝑍(𝑔,𝑎)

Proof of Theorem sticksstones18
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 sticksstones18.3 . . . . . . . . . . . . . 14 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)}
21eqimssi 3990 . . . . . . . . . . . . 13 𝐴 ⊆ {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)}
32a1i 11 . . . . . . . . . . . 12 (𝜑𝐴 ⊆ {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)})
43sseld 3928 . . . . . . . . . . 11 (𝜑 → (𝑎𝐴𝑎 ∈ {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)}))
54imp 406 . . . . . . . . . 10 ((𝜑𝑎𝐴) → 𝑎 ∈ {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)})
6 vex 3440 . . . . . . . . . . 11 𝑎 ∈ V
7 feq1 6629 . . . . . . . . . . . 12 (𝑔 = 𝑎 → (𝑔:(1...𝐾)⟶ℕ0𝑎:(1...𝐾)⟶ℕ0))
8 simpl 482 . . . . . . . . . . . . . . 15 ((𝑔 = 𝑎𝑖 ∈ (1...𝐾)) → 𝑔 = 𝑎)
98fveq1d 6824 . . . . . . . . . . . . . 14 ((𝑔 = 𝑎𝑖 ∈ (1...𝐾)) → (𝑔𝑖) = (𝑎𝑖))
109sumeq2dv 15609 . . . . . . . . . . . . 13 (𝑔 = 𝑎 → Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = Σ𝑖 ∈ (1...𝐾)(𝑎𝑖))
1110eqeq1d 2733 . . . . . . . . . . . 12 (𝑔 = 𝑎 → (Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁 ↔ Σ𝑖 ∈ (1...𝐾)(𝑎𝑖) = 𝑁))
127, 11anbi12d 632 . . . . . . . . . . 11 (𝑔 = 𝑎 → ((𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁) ↔ (𝑎:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑎𝑖) = 𝑁)))
136, 12elab 3630 . . . . . . . . . 10 (𝑎 ∈ {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)} ↔ (𝑎:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑎𝑖) = 𝑁))
145, 13sylib 218 . . . . . . . . 9 ((𝜑𝑎𝐴) → (𝑎:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑎𝑖) = 𝑁))
1514simpld 494 . . . . . . . 8 ((𝜑𝑎𝐴) → 𝑎:(1...𝐾)⟶ℕ0)
1615adantr 480 . . . . . . 7 (((𝜑𝑎𝐴) ∧ 𝑥𝑆) → 𝑎:(1...𝐾)⟶ℕ0)
17 sticksstones18.5 . . . . . . . . . . 11 (𝜑𝑍:(1...𝐾)–1-1-onto𝑆)
18 f1ocnv 6775 . . . . . . . . . . 11 (𝑍:(1...𝐾)–1-1-onto𝑆𝑍:𝑆1-1-onto→(1...𝐾))
1917, 18syl 17 . . . . . . . . . 10 (𝜑𝑍:𝑆1-1-onto→(1...𝐾))
20 f1of 6763 . . . . . . . . . 10 (𝑍:𝑆1-1-onto→(1...𝐾) → 𝑍:𝑆⟶(1...𝐾))
2119, 20syl 17 . . . . . . . . 9 (𝜑𝑍:𝑆⟶(1...𝐾))
2221adantr 480 . . . . . . . 8 ((𝜑𝑎𝐴) → 𝑍:𝑆⟶(1...𝐾))
2322ffvelcdmda 7017 . . . . . . 7 (((𝜑𝑎𝐴) ∧ 𝑥𝑆) → (𝑍𝑥) ∈ (1...𝐾))
2416, 23ffvelcdmd 7018 . . . . . 6 (((𝜑𝑎𝐴) ∧ 𝑥𝑆) → (𝑎‘(𝑍𝑥)) ∈ ℕ0)
2524fmpttd 7048 . . . . 5 ((𝜑𝑎𝐴) → (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))):𝑆⟶ℕ0)
26 eqidd 2732 . . . . . . . 8 (((𝜑𝑎𝐴) ∧ 𝑖𝑆) → (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))) = (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))))
27 simpr 484 . . . . . . . . . 10 ((((𝜑𝑎𝐴) ∧ 𝑖𝑆) ∧ 𝑥 = 𝑖) → 𝑥 = 𝑖)
2827fveq2d 6826 . . . . . . . . 9 ((((𝜑𝑎𝐴) ∧ 𝑖𝑆) ∧ 𝑥 = 𝑖) → (𝑍𝑥) = (𝑍𝑖))
2928fveq2d 6826 . . . . . . . 8 ((((𝜑𝑎𝐴) ∧ 𝑖𝑆) ∧ 𝑥 = 𝑖) → (𝑎‘(𝑍𝑥)) = (𝑎‘(𝑍𝑖)))
30 simpr 484 . . . . . . . 8 (((𝜑𝑎𝐴) ∧ 𝑖𝑆) → 𝑖𝑆)
31 fvexd 6837 . . . . . . . 8 (((𝜑𝑎𝐴) ∧ 𝑖𝑆) → (𝑎‘(𝑍𝑖)) ∈ V)
3226, 29, 30, 31fvmptd 6936 . . . . . . 7 (((𝜑𝑎𝐴) ∧ 𝑖𝑆) → ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥)))‘𝑖) = (𝑎‘(𝑍𝑖)))
3332sumeq2dv 15609 . . . . . 6 ((𝜑𝑎𝐴) → Σ𝑖𝑆 ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥)))‘𝑖) = Σ𝑖𝑆 (𝑎‘(𝑍𝑖)))
34 fveq2 6822 . . . . . . . . 9 (𝑛 = (𝑍𝑖) → (𝑎𝑛) = (𝑎‘(𝑍𝑖)))
35 fzfid 13880 . . . . . . . . . 10 ((𝜑𝑎𝐴) → (1...𝐾) ∈ Fin)
3617adantr 480 . . . . . . . . . . . 12 ((𝜑𝑎𝐴) → 𝑍:(1...𝐾)–1-1-onto𝑆)
37 f1oenfi 9088 . . . . . . . . . . . 12 (((1...𝐾) ∈ Fin ∧ 𝑍:(1...𝐾)–1-1-onto𝑆) → (1...𝐾) ≈ 𝑆)
3835, 36, 37syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑎𝐴) → (1...𝐾) ≈ 𝑆)
3938ensymd 8927 . . . . . . . . . 10 ((𝜑𝑎𝐴) → 𝑆 ≈ (1...𝐾))
40 enfii 9095 . . . . . . . . . 10 (((1...𝐾) ∈ Fin ∧ 𝑆 ≈ (1...𝐾)) → 𝑆 ∈ Fin)
4135, 39, 40syl2anc 584 . . . . . . . . 9 ((𝜑𝑎𝐴) → 𝑆 ∈ Fin)
4219adantr 480 . . . . . . . . 9 ((𝜑𝑎𝐴) → 𝑍:𝑆1-1-onto→(1...𝐾))
43 eqidd 2732 . . . . . . . . 9 (((𝜑𝑎𝐴) ∧ 𝑖𝑆) → (𝑍𝑖) = (𝑍𝑖))
44 nn0sscn 12386 . . . . . . . . . . . 12 0 ⊆ ℂ
4544a1i 11 . . . . . . . . . . 11 ((𝜑𝑎𝐴) → ℕ0 ⊆ ℂ)
46 fss 6667 . . . . . . . . . . 11 ((𝑎:(1...𝐾)⟶ℕ0 ∧ ℕ0 ⊆ ℂ) → 𝑎:(1...𝐾)⟶ℂ)
4715, 45, 46syl2anc 584 . . . . . . . . . 10 ((𝜑𝑎𝐴) → 𝑎:(1...𝐾)⟶ℂ)
4847ffvelcdmda 7017 . . . . . . . . 9 (((𝜑𝑎𝐴) ∧ 𝑛 ∈ (1...𝐾)) → (𝑎𝑛) ∈ ℂ)
4934, 41, 42, 43, 48fsumf1o 15630 . . . . . . . 8 ((𝜑𝑎𝐴) → Σ𝑛 ∈ (1...𝐾)(𝑎𝑛) = Σ𝑖𝑆 (𝑎‘(𝑍𝑖)))
5049eqcomd 2737 . . . . . . 7 ((𝜑𝑎𝐴) → Σ𝑖𝑆 (𝑎‘(𝑍𝑖)) = Σ𝑛 ∈ (1...𝐾)(𝑎𝑛))
51 fveq2 6822 . . . . . . . . . 10 (𝑛 = 𝑖 → (𝑎𝑛) = (𝑎𝑖))
5251cbvsumv 15603 . . . . . . . . 9 Σ𝑛 ∈ (1...𝐾)(𝑎𝑛) = Σ𝑖 ∈ (1...𝐾)(𝑎𝑖)
5352a1i 11 . . . . . . . 8 ((𝜑𝑎𝐴) → Σ𝑛 ∈ (1...𝐾)(𝑎𝑛) = Σ𝑖 ∈ (1...𝐾)(𝑎𝑖))
5414simprd 495 . . . . . . . 8 ((𝜑𝑎𝐴) → Σ𝑖 ∈ (1...𝐾)(𝑎𝑖) = 𝑁)
5553, 54eqtrd 2766 . . . . . . 7 ((𝜑𝑎𝐴) → Σ𝑛 ∈ (1...𝐾)(𝑎𝑛) = 𝑁)
5650, 55eqtrd 2766 . . . . . 6 ((𝜑𝑎𝐴) → Σ𝑖𝑆 (𝑎‘(𝑍𝑖)) = 𝑁)
5733, 56eqtrd 2766 . . . . 5 ((𝜑𝑎𝐴) → Σ𝑖𝑆 ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥)))‘𝑖) = 𝑁)
5825, 57jca 511 . . . 4 ((𝜑𝑎𝐴) → ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))):𝑆⟶ℕ0 ∧ Σ𝑖𝑆 ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥)))‘𝑖) = 𝑁))
59 fzfid 13880 . . . . . . . 8 (𝜑 → (1...𝐾) ∈ Fin)
6059adantr 480 . . . . . . 7 ((𝜑𝑎𝐴) → (1...𝐾) ∈ Fin)
6159, 17, 37syl2anc 584 . . . . . . . . 9 (𝜑 → (1...𝐾) ≈ 𝑆)
6261ensymd 8927 . . . . . . . 8 (𝜑𝑆 ≈ (1...𝐾))
6362adantr 480 . . . . . . 7 ((𝜑𝑎𝐴) → 𝑆 ≈ (1...𝐾))
6460, 63, 40syl2anc 584 . . . . . 6 ((𝜑𝑎𝐴) → 𝑆 ∈ Fin)
6564mptexd 7158 . . . . 5 ((𝜑𝑎𝐴) → (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))) ∈ V)
66 feq1 6629 . . . . . . 7 ( = (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))) → (:𝑆⟶ℕ0 ↔ (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))):𝑆⟶ℕ0))
67 simpl 482 . . . . . . . . . 10 (( = (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))) ∧ 𝑖𝑆) → = (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))))
6867fveq1d 6824 . . . . . . . . 9 (( = (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))) ∧ 𝑖𝑆) → (𝑖) = ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥)))‘𝑖))
6968sumeq2dv 15609 . . . . . . . 8 ( = (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))) → Σ𝑖𝑆 (𝑖) = Σ𝑖𝑆 ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥)))‘𝑖))
7069eqeq1d 2733 . . . . . . 7 ( = (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))) → (Σ𝑖𝑆 (𝑖) = 𝑁 ↔ Σ𝑖𝑆 ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥)))‘𝑖) = 𝑁))
7166, 70anbi12d 632 . . . . . 6 ( = (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))) → ((:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁) ↔ ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))):𝑆⟶ℕ0 ∧ Σ𝑖𝑆 ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥)))‘𝑖) = 𝑁)))
7271elabg 3627 . . . . 5 ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))) ∈ V → ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))) ∈ { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)} ↔ ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))):𝑆⟶ℕ0 ∧ Σ𝑖𝑆 ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥)))‘𝑖) = 𝑁)))
7365, 72syl 17 . . . 4 ((𝜑𝑎𝐴) → ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))) ∈ { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)} ↔ ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))):𝑆⟶ℕ0 ∧ Σ𝑖𝑆 ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥)))‘𝑖) = 𝑁)))
7458, 73mpbird 257 . . 3 ((𝜑𝑎𝐴) → (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))) ∈ { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)})
75 sticksstones18.4 . . . 4 𝐵 = { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)}
7675a1i 11 . . 3 ((𝜑𝑎𝐴) → 𝐵 = { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)})
7774, 76eleqtrrd 2834 . 2 ((𝜑𝑎𝐴) → (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))) ∈ 𝐵)
78 sticksstones18.6 . 2 𝐹 = (𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))))
7977, 78fmptd 7047 1 (𝜑𝐹:𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  {cab 2709  Vcvv 3436  wss 3897   class class class wbr 5089  cmpt 5170  ccnv 5613  wf 6477  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  cen 8866  Fincfn 8869  cc 11004  1c1 11007  0cn0 12381  ...cfz 13407  Σcsu 15593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594
This theorem is referenced by:  sticksstones19  42257
  Copyright terms: Public domain W3C validator