Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sticksstones18 Structured version   Visualization version   GIF version

Theorem sticksstones18 42140
Description: Extend sticks and stones to finite sets, bijective builder. (Contributed by metakunt, 23-Oct-2024.)
Hypotheses
Ref Expression
sticksstones18.1 (𝜑𝑁 ∈ ℕ0)
sticksstones18.2 (𝜑𝐾 ∈ ℕ0)
sticksstones18.3 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)}
sticksstones18.4 𝐵 = { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)}
sticksstones18.5 (𝜑𝑍:(1...𝐾)–1-1-onto𝑆)
sticksstones18.6 𝐹 = (𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))))
Assertion
Ref Expression
sticksstones18 (𝜑𝐹:𝐴𝐵)
Distinct variable groups:   𝐴,𝑎,𝑖,𝑥   𝐵,𝑎   𝑔,𝐾,𝑖   𝑔,𝑁   ,𝑁   𝑆,,𝑖,𝑥   ,𝑍,𝑖,𝑥   𝑔,𝑎   ,𝑎   𝜑,𝑎,𝑖,𝑥
Allowed substitution hints:   𝜑(𝑔,)   𝐴(𝑔,)   𝐵(𝑥,𝑔,,𝑖)   𝑆(𝑔,𝑎)   𝐹(𝑥,𝑔,,𝑖,𝑎)   𝐾(𝑥,,𝑎)   𝑁(𝑥,𝑖,𝑎)   𝑍(𝑔,𝑎)

Proof of Theorem sticksstones18
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 sticksstones18.3 . . . . . . . . . . . . . 14 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)}
21eqimssi 4024 . . . . . . . . . . . . 13 𝐴 ⊆ {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)}
32a1i 11 . . . . . . . . . . . 12 (𝜑𝐴 ⊆ {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)})
43sseld 3962 . . . . . . . . . . 11 (𝜑 → (𝑎𝐴𝑎 ∈ {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)}))
54imp 406 . . . . . . . . . 10 ((𝜑𝑎𝐴) → 𝑎 ∈ {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)})
6 vex 3467 . . . . . . . . . . 11 𝑎 ∈ V
7 feq1 6696 . . . . . . . . . . . 12 (𝑔 = 𝑎 → (𝑔:(1...𝐾)⟶ℕ0𝑎:(1...𝐾)⟶ℕ0))
8 simpl 482 . . . . . . . . . . . . . . 15 ((𝑔 = 𝑎𝑖 ∈ (1...𝐾)) → 𝑔 = 𝑎)
98fveq1d 6888 . . . . . . . . . . . . . 14 ((𝑔 = 𝑎𝑖 ∈ (1...𝐾)) → (𝑔𝑖) = (𝑎𝑖))
109sumeq2dv 15721 . . . . . . . . . . . . 13 (𝑔 = 𝑎 → Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = Σ𝑖 ∈ (1...𝐾)(𝑎𝑖))
1110eqeq1d 2736 . . . . . . . . . . . 12 (𝑔 = 𝑎 → (Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁 ↔ Σ𝑖 ∈ (1...𝐾)(𝑎𝑖) = 𝑁))
127, 11anbi12d 632 . . . . . . . . . . 11 (𝑔 = 𝑎 → ((𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁) ↔ (𝑎:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑎𝑖) = 𝑁)))
136, 12elab 3662 . . . . . . . . . 10 (𝑎 ∈ {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)} ↔ (𝑎:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑎𝑖) = 𝑁))
145, 13sylib 218 . . . . . . . . 9 ((𝜑𝑎𝐴) → (𝑎:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑎𝑖) = 𝑁))
1514simpld 494 . . . . . . . 8 ((𝜑𝑎𝐴) → 𝑎:(1...𝐾)⟶ℕ0)
1615adantr 480 . . . . . . 7 (((𝜑𝑎𝐴) ∧ 𝑥𝑆) → 𝑎:(1...𝐾)⟶ℕ0)
17 sticksstones18.5 . . . . . . . . . . 11 (𝜑𝑍:(1...𝐾)–1-1-onto𝑆)
18 f1ocnv 6840 . . . . . . . . . . 11 (𝑍:(1...𝐾)–1-1-onto𝑆𝑍:𝑆1-1-onto→(1...𝐾))
1917, 18syl 17 . . . . . . . . . 10 (𝜑𝑍:𝑆1-1-onto→(1...𝐾))
20 f1of 6828 . . . . . . . . . 10 (𝑍:𝑆1-1-onto→(1...𝐾) → 𝑍:𝑆⟶(1...𝐾))
2119, 20syl 17 . . . . . . . . 9 (𝜑𝑍:𝑆⟶(1...𝐾))
2221adantr 480 . . . . . . . 8 ((𝜑𝑎𝐴) → 𝑍:𝑆⟶(1...𝐾))
2322ffvelcdmda 7084 . . . . . . 7 (((𝜑𝑎𝐴) ∧ 𝑥𝑆) → (𝑍𝑥) ∈ (1...𝐾))
2416, 23ffvelcdmd 7085 . . . . . 6 (((𝜑𝑎𝐴) ∧ 𝑥𝑆) → (𝑎‘(𝑍𝑥)) ∈ ℕ0)
2524fmpttd 7115 . . . . 5 ((𝜑𝑎𝐴) → (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))):𝑆⟶ℕ0)
26 eqidd 2735 . . . . . . . 8 (((𝜑𝑎𝐴) ∧ 𝑖𝑆) → (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))) = (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))))
27 simpr 484 . . . . . . . . . 10 ((((𝜑𝑎𝐴) ∧ 𝑖𝑆) ∧ 𝑥 = 𝑖) → 𝑥 = 𝑖)
2827fveq2d 6890 . . . . . . . . 9 ((((𝜑𝑎𝐴) ∧ 𝑖𝑆) ∧ 𝑥 = 𝑖) → (𝑍𝑥) = (𝑍𝑖))
2928fveq2d 6890 . . . . . . . 8 ((((𝜑𝑎𝐴) ∧ 𝑖𝑆) ∧ 𝑥 = 𝑖) → (𝑎‘(𝑍𝑥)) = (𝑎‘(𝑍𝑖)))
30 simpr 484 . . . . . . . 8 (((𝜑𝑎𝐴) ∧ 𝑖𝑆) → 𝑖𝑆)
31 fvexd 6901 . . . . . . . 8 (((𝜑𝑎𝐴) ∧ 𝑖𝑆) → (𝑎‘(𝑍𝑖)) ∈ V)
3226, 29, 30, 31fvmptd 7003 . . . . . . 7 (((𝜑𝑎𝐴) ∧ 𝑖𝑆) → ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥)))‘𝑖) = (𝑎‘(𝑍𝑖)))
3332sumeq2dv 15721 . . . . . 6 ((𝜑𝑎𝐴) → Σ𝑖𝑆 ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥)))‘𝑖) = Σ𝑖𝑆 (𝑎‘(𝑍𝑖)))
34 fveq2 6886 . . . . . . . . 9 (𝑛 = (𝑍𝑖) → (𝑎𝑛) = (𝑎‘(𝑍𝑖)))
35 fzfid 13996 . . . . . . . . . 10 ((𝜑𝑎𝐴) → (1...𝐾) ∈ Fin)
3617adantr 480 . . . . . . . . . . . 12 ((𝜑𝑎𝐴) → 𝑍:(1...𝐾)–1-1-onto𝑆)
37 f1oenfi 9201 . . . . . . . . . . . 12 (((1...𝐾) ∈ Fin ∧ 𝑍:(1...𝐾)–1-1-onto𝑆) → (1...𝐾) ≈ 𝑆)
3835, 36, 37syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑎𝐴) → (1...𝐾) ≈ 𝑆)
3938ensymd 9027 . . . . . . . . . 10 ((𝜑𝑎𝐴) → 𝑆 ≈ (1...𝐾))
40 enfii 9208 . . . . . . . . . 10 (((1...𝐾) ∈ Fin ∧ 𝑆 ≈ (1...𝐾)) → 𝑆 ∈ Fin)
4135, 39, 40syl2anc 584 . . . . . . . . 9 ((𝜑𝑎𝐴) → 𝑆 ∈ Fin)
4219adantr 480 . . . . . . . . 9 ((𝜑𝑎𝐴) → 𝑍:𝑆1-1-onto→(1...𝐾))
43 eqidd 2735 . . . . . . . . 9 (((𝜑𝑎𝐴) ∧ 𝑖𝑆) → (𝑍𝑖) = (𝑍𝑖))
44 nn0sscn 12514 . . . . . . . . . . . 12 0 ⊆ ℂ
4544a1i 11 . . . . . . . . . . 11 ((𝜑𝑎𝐴) → ℕ0 ⊆ ℂ)
46 fss 6732 . . . . . . . . . . 11 ((𝑎:(1...𝐾)⟶ℕ0 ∧ ℕ0 ⊆ ℂ) → 𝑎:(1...𝐾)⟶ℂ)
4715, 45, 46syl2anc 584 . . . . . . . . . 10 ((𝜑𝑎𝐴) → 𝑎:(1...𝐾)⟶ℂ)
4847ffvelcdmda 7084 . . . . . . . . 9 (((𝜑𝑎𝐴) ∧ 𝑛 ∈ (1...𝐾)) → (𝑎𝑛) ∈ ℂ)
4934, 41, 42, 43, 48fsumf1o 15742 . . . . . . . 8 ((𝜑𝑎𝐴) → Σ𝑛 ∈ (1...𝐾)(𝑎𝑛) = Σ𝑖𝑆 (𝑎‘(𝑍𝑖)))
5049eqcomd 2740 . . . . . . 7 ((𝜑𝑎𝐴) → Σ𝑖𝑆 (𝑎‘(𝑍𝑖)) = Σ𝑛 ∈ (1...𝐾)(𝑎𝑛))
51 fveq2 6886 . . . . . . . . . 10 (𝑛 = 𝑖 → (𝑎𝑛) = (𝑎𝑖))
5251cbvsumv 15715 . . . . . . . . 9 Σ𝑛 ∈ (1...𝐾)(𝑎𝑛) = Σ𝑖 ∈ (1...𝐾)(𝑎𝑖)
5352a1i 11 . . . . . . . 8 ((𝜑𝑎𝐴) → Σ𝑛 ∈ (1...𝐾)(𝑎𝑛) = Σ𝑖 ∈ (1...𝐾)(𝑎𝑖))
5414simprd 495 . . . . . . . 8 ((𝜑𝑎𝐴) → Σ𝑖 ∈ (1...𝐾)(𝑎𝑖) = 𝑁)
5553, 54eqtrd 2769 . . . . . . 7 ((𝜑𝑎𝐴) → Σ𝑛 ∈ (1...𝐾)(𝑎𝑛) = 𝑁)
5650, 55eqtrd 2769 . . . . . 6 ((𝜑𝑎𝐴) → Σ𝑖𝑆 (𝑎‘(𝑍𝑖)) = 𝑁)
5733, 56eqtrd 2769 . . . . 5 ((𝜑𝑎𝐴) → Σ𝑖𝑆 ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥)))‘𝑖) = 𝑁)
5825, 57jca 511 . . . 4 ((𝜑𝑎𝐴) → ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))):𝑆⟶ℕ0 ∧ Σ𝑖𝑆 ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥)))‘𝑖) = 𝑁))
59 fzfid 13996 . . . . . . . 8 (𝜑 → (1...𝐾) ∈ Fin)
6059adantr 480 . . . . . . 7 ((𝜑𝑎𝐴) → (1...𝐾) ∈ Fin)
6159, 17, 37syl2anc 584 . . . . . . . . 9 (𝜑 → (1...𝐾) ≈ 𝑆)
6261ensymd 9027 . . . . . . . 8 (𝜑𝑆 ≈ (1...𝐾))
6362adantr 480 . . . . . . 7 ((𝜑𝑎𝐴) → 𝑆 ≈ (1...𝐾))
6460, 63, 40syl2anc 584 . . . . . 6 ((𝜑𝑎𝐴) → 𝑆 ∈ Fin)
6564mptexd 7226 . . . . 5 ((𝜑𝑎𝐴) → (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))) ∈ V)
66 feq1 6696 . . . . . . 7 ( = (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))) → (:𝑆⟶ℕ0 ↔ (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))):𝑆⟶ℕ0))
67 simpl 482 . . . . . . . . . 10 (( = (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))) ∧ 𝑖𝑆) → = (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))))
6867fveq1d 6888 . . . . . . . . 9 (( = (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))) ∧ 𝑖𝑆) → (𝑖) = ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥)))‘𝑖))
6968sumeq2dv 15721 . . . . . . . 8 ( = (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))) → Σ𝑖𝑆 (𝑖) = Σ𝑖𝑆 ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥)))‘𝑖))
7069eqeq1d 2736 . . . . . . 7 ( = (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))) → (Σ𝑖𝑆 (𝑖) = 𝑁 ↔ Σ𝑖𝑆 ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥)))‘𝑖) = 𝑁))
7166, 70anbi12d 632 . . . . . 6 ( = (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))) → ((:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁) ↔ ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))):𝑆⟶ℕ0 ∧ Σ𝑖𝑆 ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥)))‘𝑖) = 𝑁)))
7271elabg 3659 . . . . 5 ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))) ∈ V → ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))) ∈ { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)} ↔ ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))):𝑆⟶ℕ0 ∧ Σ𝑖𝑆 ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥)))‘𝑖) = 𝑁)))
7365, 72syl 17 . . . 4 ((𝜑𝑎𝐴) → ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))) ∈ { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)} ↔ ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))):𝑆⟶ℕ0 ∧ Σ𝑖𝑆 ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥)))‘𝑖) = 𝑁)))
7458, 73mpbird 257 . . 3 ((𝜑𝑎𝐴) → (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))) ∈ { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)})
75 sticksstones18.4 . . . 4 𝐵 = { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)}
7675a1i 11 . . 3 ((𝜑𝑎𝐴) → 𝐵 = { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)})
7774, 76eleqtrrd 2836 . 2 ((𝜑𝑎𝐴) → (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))) ∈ 𝐵)
78 sticksstones18.6 . 2 𝐹 = (𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))))
7977, 78fmptd 7114 1 (𝜑𝐹:𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  {cab 2712  Vcvv 3463  wss 3931   class class class wbr 5123  cmpt 5205  ccnv 5664  wf 6537  1-1-ontowf1o 6540  cfv 6541  (class class class)co 7413  cen 8964  Fincfn 8967  cc 11135  1c1 11138  0cn0 12509  ...cfz 13529  Σcsu 15705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-inf2 9663  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-sup 9464  df-oi 9532  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-n0 12510  df-z 12597  df-uz 12861  df-rp 13017  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-hash 14353  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258  df-clim 15507  df-sum 15706
This theorem is referenced by:  sticksstones19  42141
  Copyright terms: Public domain W3C validator