Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sticksstones18 Structured version   Visualization version   GIF version

Theorem sticksstones18 42159
Description: Extend sticks and stones to finite sets, bijective builder. (Contributed by metakunt, 23-Oct-2024.)
Hypotheses
Ref Expression
sticksstones18.1 (𝜑𝑁 ∈ ℕ0)
sticksstones18.2 (𝜑𝐾 ∈ ℕ0)
sticksstones18.3 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)}
sticksstones18.4 𝐵 = { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)}
sticksstones18.5 (𝜑𝑍:(1...𝐾)–1-1-onto𝑆)
sticksstones18.6 𝐹 = (𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))))
Assertion
Ref Expression
sticksstones18 (𝜑𝐹:𝐴𝐵)
Distinct variable groups:   𝐴,𝑎,𝑖,𝑥   𝐵,𝑎   𝑔,𝐾,𝑖   𝑔,𝑁   ,𝑁   𝑆,,𝑖,𝑥   ,𝑍,𝑖,𝑥   𝑔,𝑎   ,𝑎   𝜑,𝑎,𝑖,𝑥
Allowed substitution hints:   𝜑(𝑔,)   𝐴(𝑔,)   𝐵(𝑥,𝑔,,𝑖)   𝑆(𝑔,𝑎)   𝐹(𝑥,𝑔,,𝑖,𝑎)   𝐾(𝑥,,𝑎)   𝑁(𝑥,𝑖,𝑎)   𝑍(𝑔,𝑎)

Proof of Theorem sticksstones18
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 sticksstones18.3 . . . . . . . . . . . . . 14 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)}
21eqimssi 4010 . . . . . . . . . . . . 13 𝐴 ⊆ {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)}
32a1i 11 . . . . . . . . . . . 12 (𝜑𝐴 ⊆ {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)})
43sseld 3948 . . . . . . . . . . 11 (𝜑 → (𝑎𝐴𝑎 ∈ {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)}))
54imp 406 . . . . . . . . . 10 ((𝜑𝑎𝐴) → 𝑎 ∈ {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)})
6 vex 3454 . . . . . . . . . . 11 𝑎 ∈ V
7 feq1 6669 . . . . . . . . . . . 12 (𝑔 = 𝑎 → (𝑔:(1...𝐾)⟶ℕ0𝑎:(1...𝐾)⟶ℕ0))
8 simpl 482 . . . . . . . . . . . . . . 15 ((𝑔 = 𝑎𝑖 ∈ (1...𝐾)) → 𝑔 = 𝑎)
98fveq1d 6863 . . . . . . . . . . . . . 14 ((𝑔 = 𝑎𝑖 ∈ (1...𝐾)) → (𝑔𝑖) = (𝑎𝑖))
109sumeq2dv 15675 . . . . . . . . . . . . 13 (𝑔 = 𝑎 → Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = Σ𝑖 ∈ (1...𝐾)(𝑎𝑖))
1110eqeq1d 2732 . . . . . . . . . . . 12 (𝑔 = 𝑎 → (Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁 ↔ Σ𝑖 ∈ (1...𝐾)(𝑎𝑖) = 𝑁))
127, 11anbi12d 632 . . . . . . . . . . 11 (𝑔 = 𝑎 → ((𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁) ↔ (𝑎:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑎𝑖) = 𝑁)))
136, 12elab 3649 . . . . . . . . . 10 (𝑎 ∈ {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)} ↔ (𝑎:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑎𝑖) = 𝑁))
145, 13sylib 218 . . . . . . . . 9 ((𝜑𝑎𝐴) → (𝑎:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑎𝑖) = 𝑁))
1514simpld 494 . . . . . . . 8 ((𝜑𝑎𝐴) → 𝑎:(1...𝐾)⟶ℕ0)
1615adantr 480 . . . . . . 7 (((𝜑𝑎𝐴) ∧ 𝑥𝑆) → 𝑎:(1...𝐾)⟶ℕ0)
17 sticksstones18.5 . . . . . . . . . . 11 (𝜑𝑍:(1...𝐾)–1-1-onto𝑆)
18 f1ocnv 6815 . . . . . . . . . . 11 (𝑍:(1...𝐾)–1-1-onto𝑆𝑍:𝑆1-1-onto→(1...𝐾))
1917, 18syl 17 . . . . . . . . . 10 (𝜑𝑍:𝑆1-1-onto→(1...𝐾))
20 f1of 6803 . . . . . . . . . 10 (𝑍:𝑆1-1-onto→(1...𝐾) → 𝑍:𝑆⟶(1...𝐾))
2119, 20syl 17 . . . . . . . . 9 (𝜑𝑍:𝑆⟶(1...𝐾))
2221adantr 480 . . . . . . . 8 ((𝜑𝑎𝐴) → 𝑍:𝑆⟶(1...𝐾))
2322ffvelcdmda 7059 . . . . . . 7 (((𝜑𝑎𝐴) ∧ 𝑥𝑆) → (𝑍𝑥) ∈ (1...𝐾))
2416, 23ffvelcdmd 7060 . . . . . 6 (((𝜑𝑎𝐴) ∧ 𝑥𝑆) → (𝑎‘(𝑍𝑥)) ∈ ℕ0)
2524fmpttd 7090 . . . . 5 ((𝜑𝑎𝐴) → (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))):𝑆⟶ℕ0)
26 eqidd 2731 . . . . . . . 8 (((𝜑𝑎𝐴) ∧ 𝑖𝑆) → (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))) = (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))))
27 simpr 484 . . . . . . . . . 10 ((((𝜑𝑎𝐴) ∧ 𝑖𝑆) ∧ 𝑥 = 𝑖) → 𝑥 = 𝑖)
2827fveq2d 6865 . . . . . . . . 9 ((((𝜑𝑎𝐴) ∧ 𝑖𝑆) ∧ 𝑥 = 𝑖) → (𝑍𝑥) = (𝑍𝑖))
2928fveq2d 6865 . . . . . . . 8 ((((𝜑𝑎𝐴) ∧ 𝑖𝑆) ∧ 𝑥 = 𝑖) → (𝑎‘(𝑍𝑥)) = (𝑎‘(𝑍𝑖)))
30 simpr 484 . . . . . . . 8 (((𝜑𝑎𝐴) ∧ 𝑖𝑆) → 𝑖𝑆)
31 fvexd 6876 . . . . . . . 8 (((𝜑𝑎𝐴) ∧ 𝑖𝑆) → (𝑎‘(𝑍𝑖)) ∈ V)
3226, 29, 30, 31fvmptd 6978 . . . . . . 7 (((𝜑𝑎𝐴) ∧ 𝑖𝑆) → ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥)))‘𝑖) = (𝑎‘(𝑍𝑖)))
3332sumeq2dv 15675 . . . . . 6 ((𝜑𝑎𝐴) → Σ𝑖𝑆 ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥)))‘𝑖) = Σ𝑖𝑆 (𝑎‘(𝑍𝑖)))
34 fveq2 6861 . . . . . . . . 9 (𝑛 = (𝑍𝑖) → (𝑎𝑛) = (𝑎‘(𝑍𝑖)))
35 fzfid 13945 . . . . . . . . . 10 ((𝜑𝑎𝐴) → (1...𝐾) ∈ Fin)
3617adantr 480 . . . . . . . . . . . 12 ((𝜑𝑎𝐴) → 𝑍:(1...𝐾)–1-1-onto𝑆)
37 f1oenfi 9149 . . . . . . . . . . . 12 (((1...𝐾) ∈ Fin ∧ 𝑍:(1...𝐾)–1-1-onto𝑆) → (1...𝐾) ≈ 𝑆)
3835, 36, 37syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑎𝐴) → (1...𝐾) ≈ 𝑆)
3938ensymd 8979 . . . . . . . . . 10 ((𝜑𝑎𝐴) → 𝑆 ≈ (1...𝐾))
40 enfii 9156 . . . . . . . . . 10 (((1...𝐾) ∈ Fin ∧ 𝑆 ≈ (1...𝐾)) → 𝑆 ∈ Fin)
4135, 39, 40syl2anc 584 . . . . . . . . 9 ((𝜑𝑎𝐴) → 𝑆 ∈ Fin)
4219adantr 480 . . . . . . . . 9 ((𝜑𝑎𝐴) → 𝑍:𝑆1-1-onto→(1...𝐾))
43 eqidd 2731 . . . . . . . . 9 (((𝜑𝑎𝐴) ∧ 𝑖𝑆) → (𝑍𝑖) = (𝑍𝑖))
44 nn0sscn 12454 . . . . . . . . . . . 12 0 ⊆ ℂ
4544a1i 11 . . . . . . . . . . 11 ((𝜑𝑎𝐴) → ℕ0 ⊆ ℂ)
46 fss 6707 . . . . . . . . . . 11 ((𝑎:(1...𝐾)⟶ℕ0 ∧ ℕ0 ⊆ ℂ) → 𝑎:(1...𝐾)⟶ℂ)
4715, 45, 46syl2anc 584 . . . . . . . . . 10 ((𝜑𝑎𝐴) → 𝑎:(1...𝐾)⟶ℂ)
4847ffvelcdmda 7059 . . . . . . . . 9 (((𝜑𝑎𝐴) ∧ 𝑛 ∈ (1...𝐾)) → (𝑎𝑛) ∈ ℂ)
4934, 41, 42, 43, 48fsumf1o 15696 . . . . . . . 8 ((𝜑𝑎𝐴) → Σ𝑛 ∈ (1...𝐾)(𝑎𝑛) = Σ𝑖𝑆 (𝑎‘(𝑍𝑖)))
5049eqcomd 2736 . . . . . . 7 ((𝜑𝑎𝐴) → Σ𝑖𝑆 (𝑎‘(𝑍𝑖)) = Σ𝑛 ∈ (1...𝐾)(𝑎𝑛))
51 fveq2 6861 . . . . . . . . . 10 (𝑛 = 𝑖 → (𝑎𝑛) = (𝑎𝑖))
5251cbvsumv 15669 . . . . . . . . 9 Σ𝑛 ∈ (1...𝐾)(𝑎𝑛) = Σ𝑖 ∈ (1...𝐾)(𝑎𝑖)
5352a1i 11 . . . . . . . 8 ((𝜑𝑎𝐴) → Σ𝑛 ∈ (1...𝐾)(𝑎𝑛) = Σ𝑖 ∈ (1...𝐾)(𝑎𝑖))
5414simprd 495 . . . . . . . 8 ((𝜑𝑎𝐴) → Σ𝑖 ∈ (1...𝐾)(𝑎𝑖) = 𝑁)
5553, 54eqtrd 2765 . . . . . . 7 ((𝜑𝑎𝐴) → Σ𝑛 ∈ (1...𝐾)(𝑎𝑛) = 𝑁)
5650, 55eqtrd 2765 . . . . . 6 ((𝜑𝑎𝐴) → Σ𝑖𝑆 (𝑎‘(𝑍𝑖)) = 𝑁)
5733, 56eqtrd 2765 . . . . 5 ((𝜑𝑎𝐴) → Σ𝑖𝑆 ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥)))‘𝑖) = 𝑁)
5825, 57jca 511 . . . 4 ((𝜑𝑎𝐴) → ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))):𝑆⟶ℕ0 ∧ Σ𝑖𝑆 ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥)))‘𝑖) = 𝑁))
59 fzfid 13945 . . . . . . . 8 (𝜑 → (1...𝐾) ∈ Fin)
6059adantr 480 . . . . . . 7 ((𝜑𝑎𝐴) → (1...𝐾) ∈ Fin)
6159, 17, 37syl2anc 584 . . . . . . . . 9 (𝜑 → (1...𝐾) ≈ 𝑆)
6261ensymd 8979 . . . . . . . 8 (𝜑𝑆 ≈ (1...𝐾))
6362adantr 480 . . . . . . 7 ((𝜑𝑎𝐴) → 𝑆 ≈ (1...𝐾))
6460, 63, 40syl2anc 584 . . . . . 6 ((𝜑𝑎𝐴) → 𝑆 ∈ Fin)
6564mptexd 7201 . . . . 5 ((𝜑𝑎𝐴) → (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))) ∈ V)
66 feq1 6669 . . . . . . 7 ( = (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))) → (:𝑆⟶ℕ0 ↔ (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))):𝑆⟶ℕ0))
67 simpl 482 . . . . . . . . . 10 (( = (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))) ∧ 𝑖𝑆) → = (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))))
6867fveq1d 6863 . . . . . . . . 9 (( = (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))) ∧ 𝑖𝑆) → (𝑖) = ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥)))‘𝑖))
6968sumeq2dv 15675 . . . . . . . 8 ( = (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))) → Σ𝑖𝑆 (𝑖) = Σ𝑖𝑆 ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥)))‘𝑖))
7069eqeq1d 2732 . . . . . . 7 ( = (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))) → (Σ𝑖𝑆 (𝑖) = 𝑁 ↔ Σ𝑖𝑆 ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥)))‘𝑖) = 𝑁))
7166, 70anbi12d 632 . . . . . 6 ( = (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))) → ((:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁) ↔ ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))):𝑆⟶ℕ0 ∧ Σ𝑖𝑆 ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥)))‘𝑖) = 𝑁)))
7271elabg 3646 . . . . 5 ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))) ∈ V → ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))) ∈ { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)} ↔ ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))):𝑆⟶ℕ0 ∧ Σ𝑖𝑆 ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥)))‘𝑖) = 𝑁)))
7365, 72syl 17 . . . 4 ((𝜑𝑎𝐴) → ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))) ∈ { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)} ↔ ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))):𝑆⟶ℕ0 ∧ Σ𝑖𝑆 ((𝑥𝑆 ↦ (𝑎‘(𝑍𝑥)))‘𝑖) = 𝑁)))
7458, 73mpbird 257 . . 3 ((𝜑𝑎𝐴) → (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))) ∈ { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)})
75 sticksstones18.4 . . . 4 𝐵 = { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)}
7675a1i 11 . . 3 ((𝜑𝑎𝐴) → 𝐵 = { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)})
7774, 76eleqtrrd 2832 . 2 ((𝜑𝑎𝐴) → (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))) ∈ 𝐵)
78 sticksstones18.6 . 2 𝐹 = (𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))))
7977, 78fmptd 7089 1 (𝜑𝐹:𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2708  Vcvv 3450  wss 3917   class class class wbr 5110  cmpt 5191  ccnv 5640  wf 6510  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  cen 8918  Fincfn 8921  cc 11073  1c1 11076  0cn0 12449  ...cfz 13475  Σcsu 15659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660
This theorem is referenced by:  sticksstones19  42160
  Copyright terms: Public domain W3C validator