| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfzo1 | Structured version Visualization version GIF version | ||
| Description: Membership in a half-open integer range based at 1. (Contributed by Thierry Arnoux, 14-Feb-2017.) |
| Ref | Expression |
|---|---|
| elfzo1 | ⊢ (𝑁 ∈ (1..^𝑀) ↔ (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 < 𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzossnn 13606 | . . . 4 ⊢ (1..^𝑀) ⊆ ℕ | |
| 2 | 1 | sseli 3925 | . . 3 ⊢ (𝑁 ∈ (1..^𝑀) → 𝑁 ∈ ℕ) |
| 3 | elfzouz2 13569 | . . . 4 ⊢ (𝑁 ∈ (1..^𝑀) → 𝑀 ∈ (ℤ≥‘𝑁)) | |
| 4 | eluznn 12811 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ ℕ) | |
| 5 | 2, 3, 4 | syl2anc 584 | . . 3 ⊢ (𝑁 ∈ (1..^𝑀) → 𝑀 ∈ ℕ) |
| 6 | elfzolt2 13563 | . . 3 ⊢ (𝑁 ∈ (1..^𝑀) → 𝑁 < 𝑀) | |
| 7 | 2, 5, 6 | 3jca 1128 | . 2 ⊢ (𝑁 ∈ (1..^𝑀) → (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 < 𝑀)) |
| 8 | nnuz 12770 | . . . . . 6 ⊢ ℕ = (ℤ≥‘1) | |
| 9 | 8 | eqimssi 3990 | . . . . 5 ⊢ ℕ ⊆ (ℤ≥‘1) |
| 10 | 9 | sseli 3925 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ≥‘1)) |
| 11 | nnz 12484 | . . . 4 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℤ) | |
| 12 | id 22 | . . . 4 ⊢ (𝑁 < 𝑀 → 𝑁 < 𝑀) | |
| 13 | 10, 11, 12 | 3anim123i 1151 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 < 𝑀) → (𝑁 ∈ (ℤ≥‘1) ∧ 𝑀 ∈ ℤ ∧ 𝑁 < 𝑀)) |
| 14 | elfzo2 13557 | . . 3 ⊢ (𝑁 ∈ (1..^𝑀) ↔ (𝑁 ∈ (ℤ≥‘1) ∧ 𝑀 ∈ ℤ ∧ 𝑁 < 𝑀)) | |
| 15 | 13, 14 | sylibr 234 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 < 𝑀) → 𝑁 ∈ (1..^𝑀)) |
| 16 | 7, 15 | impbii 209 | 1 ⊢ (𝑁 ∈ (1..^𝑀) ↔ (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 < 𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ w3a 1086 ∈ wcel 2111 class class class wbr 5086 ‘cfv 6476 (class class class)co 7341 1c1 11002 < clt 11141 ℕcn 12120 ℤcz 12463 ℤ≥cuz 12727 ..^cfzo 13549 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-n0 12377 df-z 12464 df-uz 12728 df-fz 13403 df-fzo 13550 |
| This theorem is referenced by: 1elfzo1 13609 modfzo0difsn 13845 modsumfzodifsn 13846 cshwshashlem1 17002 cshwshashlem2 17003 pthdivtx 29700 pthdlem2lem 29740 crctcshwlkn0lem3 29785 crctcshwlkn0lem4 29786 crctcshwlkn0lem5 29787 crctcshwlkn0lem6 29788 crctcshwlkn0lem7 29789 clwwisshclwwslem 29986 fiunelros 34179 2tceilhalfelfzo1 47363 1elfzo1ceilhalf1 47368 difltmodne 47373 zplusmodne 47374 addmodne 47375 plusmod5ne 47376 minusmod5ne 47380 modmknepk 47393 mod2addne 47395 modm2nep1 47397 modm1nep2 47399 iccpartlt 47455 bgoldbtbndlem4 47839 gpgusgralem 48087 gpgedgvtx0 48092 gpgedgvtx1 48093 gpg3kgrtriexlem4 48117 gpg3kgrtriexlem6 48119 |
| Copyright terms: Public domain | W3C validator |