| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfzo1 | Structured version Visualization version GIF version | ||
| Description: Membership in a half-open integer range based at 1. (Contributed by Thierry Arnoux, 14-Feb-2017.) |
| Ref | Expression |
|---|---|
| elfzo1 | ⊢ (𝑁 ∈ (1..^𝑀) ↔ (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 < 𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzossnn 13672 | . . . 4 ⊢ (1..^𝑀) ⊆ ℕ | |
| 2 | 1 | sseli 3942 | . . 3 ⊢ (𝑁 ∈ (1..^𝑀) → 𝑁 ∈ ℕ) |
| 3 | elfzouz2 13635 | . . . 4 ⊢ (𝑁 ∈ (1..^𝑀) → 𝑀 ∈ (ℤ≥‘𝑁)) | |
| 4 | eluznn 12877 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ ℕ) | |
| 5 | 2, 3, 4 | syl2anc 584 | . . 3 ⊢ (𝑁 ∈ (1..^𝑀) → 𝑀 ∈ ℕ) |
| 6 | elfzolt2 13629 | . . 3 ⊢ (𝑁 ∈ (1..^𝑀) → 𝑁 < 𝑀) | |
| 7 | 2, 5, 6 | 3jca 1128 | . 2 ⊢ (𝑁 ∈ (1..^𝑀) → (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 < 𝑀)) |
| 8 | nnuz 12836 | . . . . . 6 ⊢ ℕ = (ℤ≥‘1) | |
| 9 | 8 | eqimssi 4007 | . . . . 5 ⊢ ℕ ⊆ (ℤ≥‘1) |
| 10 | 9 | sseli 3942 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ≥‘1)) |
| 11 | nnz 12550 | . . . 4 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℤ) | |
| 12 | id 22 | . . . 4 ⊢ (𝑁 < 𝑀 → 𝑁 < 𝑀) | |
| 13 | 10, 11, 12 | 3anim123i 1151 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 < 𝑀) → (𝑁 ∈ (ℤ≥‘1) ∧ 𝑀 ∈ ℤ ∧ 𝑁 < 𝑀)) |
| 14 | elfzo2 13623 | . . 3 ⊢ (𝑁 ∈ (1..^𝑀) ↔ (𝑁 ∈ (ℤ≥‘1) ∧ 𝑀 ∈ ℤ ∧ 𝑁 < 𝑀)) | |
| 15 | 13, 14 | sylibr 234 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 < 𝑀) → 𝑁 ∈ (1..^𝑀)) |
| 16 | 7, 15 | impbii 209 | 1 ⊢ (𝑁 ∈ (1..^𝑀) ↔ (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 < 𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 1c1 11069 < clt 11208 ℕcn 12186 ℤcz 12529 ℤ≥cuz 12793 ..^cfzo 13615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-fzo 13616 |
| This theorem is referenced by: 1elfzo1 13675 modfzo0difsn 13908 modsumfzodifsn 13909 cshwshashlem1 17066 cshwshashlem2 17067 pthdivtx 29657 pthdlem2lem 29697 crctcshwlkn0lem3 29742 crctcshwlkn0lem4 29743 crctcshwlkn0lem5 29744 crctcshwlkn0lem6 29745 crctcshwlkn0lem7 29746 clwwisshclwwslem 29943 fiunelros 34164 2tceilhalfelfzo1 47330 1elfzo1ceilhalf1 47335 difltmodne 47340 zplusmodne 47341 addmodne 47342 plusmod5ne 47343 minusmod5ne 47347 modmknepk 47360 mod2addne 47362 modm2nep1 47364 modm1nep2 47366 iccpartlt 47422 bgoldbtbndlem4 47806 gpgusgralem 48044 gpgedgvtx0 48049 gpgedgvtx1 48050 gpg3kgrtriexlem4 48074 gpg3kgrtriexlem6 48076 |
| Copyright terms: Public domain | W3C validator |