Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem66 Structured version   Visualization version   GIF version

Theorem fourierdlem66 43388
Description: Value of the 𝐺 function when the argument is not zero. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem66.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem66.x (𝜑𝑋 ∈ ℝ)
fourierdlem66.y (𝜑𝑌 ∈ ℝ)
fourierdlem66.w (𝜑𝑊 ∈ ℝ)
fourierdlem66.d 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
fourierdlem66.h 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
fourierdlem66.k 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
fourierdlem66.u 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
fourierdlem66.s 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠)))
fourierdlem66.g 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
fourierdlem66.a 𝐴 = ((-π[,]π) ∖ {0})
Assertion
Ref Expression
fourierdlem66 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝐺𝑠) = (π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))))
Distinct variable groups:   𝑛,𝑠   𝜑,𝑠
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑛,𝑠)   𝐷(𝑛,𝑠)   𝑆(𝑛,𝑠)   𝑈(𝑛,𝑠)   𝐹(𝑛,𝑠)   𝐺(𝑛,𝑠)   𝐻(𝑛,𝑠)   𝐾(𝑛,𝑠)   𝑊(𝑛,𝑠)   𝑋(𝑛,𝑠)   𝑌(𝑛,𝑠)

Proof of Theorem fourierdlem66
StepHypRef Expression
1 fourierdlem66.a . . . . . . . 8 𝐴 = ((-π[,]π) ∖ {0})
21eqimssi 3959 . . . . . . 7 𝐴 ⊆ ((-π[,]π) ∖ {0})
3 difss 4046 . . . . . . 7 ((-π[,]π) ∖ {0}) ⊆ (-π[,]π)
42, 3sstri 3910 . . . . . 6 𝐴 ⊆ (-π[,]π)
54a1i 11 . . . . 5 (𝜑𝐴 ⊆ (-π[,]π))
65sselda 3901 . . . 4 ((𝜑𝑠𝐴) → 𝑠 ∈ (-π[,]π))
76adantlr 715 . . 3 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 𝑠 ∈ (-π[,]π))
8 fourierdlem66.f . . . . . . . 8 (𝜑𝐹:ℝ⟶ℝ)
98adantr 484 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝐹:ℝ⟶ℝ)
10 fourierdlem66.x . . . . . . . 8 (𝜑𝑋 ∈ ℝ)
1110adantr 484 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ ℝ)
12 fourierdlem66.y . . . . . . . 8 (𝜑𝑌 ∈ ℝ)
1312adantr 484 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑌 ∈ ℝ)
14 fourierdlem66.w . . . . . . . 8 (𝜑𝑊 ∈ ℝ)
1514adantr 484 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑊 ∈ ℝ)
16 fourierdlem66.h . . . . . . 7 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
17 fourierdlem66.k . . . . . . 7 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
18 fourierdlem66.u . . . . . . 7 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
199, 11, 13, 15, 16, 17, 18fourierdlem55 43377 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝑈:(-π[,]π)⟶ℝ)
2019adantr 484 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 𝑈:(-π[,]π)⟶ℝ)
2120, 7ffvelrnd 6905 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝑈𝑠) ∈ ℝ)
22 nnre 11837 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
23 fourierdlem66.s . . . . . . . 8 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠)))
2423fourierdlem5 43328 . . . . . . 7 (𝑛 ∈ ℝ → 𝑆:(-π[,]π)⟶ℝ)
2522, 24syl 17 . . . . . 6 (𝑛 ∈ ℕ → 𝑆:(-π[,]π)⟶ℝ)
2625ad2antlr 727 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 𝑆:(-π[,]π)⟶ℝ)
2726, 7ffvelrnd 6905 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝑆𝑠) ∈ ℝ)
2821, 27remulcld 10863 . . 3 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((𝑈𝑠) · (𝑆𝑠)) ∈ ℝ)
29 fourierdlem66.g . . . 4 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
3029fvmpt2 6829 . . 3 ((𝑠 ∈ (-π[,]π) ∧ ((𝑈𝑠) · (𝑆𝑠)) ∈ ℝ) → (𝐺𝑠) = ((𝑈𝑠) · (𝑆𝑠)))
317, 28, 30syl2anc 587 . 2 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝐺𝑠) = ((𝑈𝑠) · (𝑆𝑠)))
328, 10, 12, 14, 16fourierdlem9 43332 . . . . . . . . 9 (𝜑𝐻:(-π[,]π)⟶ℝ)
3332adantr 484 . . . . . . . 8 ((𝜑𝑠𝐴) → 𝐻:(-π[,]π)⟶ℝ)
3433, 6ffvelrnd 6905 . . . . . . 7 ((𝜑𝑠𝐴) → (𝐻𝑠) ∈ ℝ)
3517fourierdlem43 43366 . . . . . . . . 9 𝐾:(-π[,]π)⟶ℝ
3635a1i 11 . . . . . . . 8 ((𝜑𝑠𝐴) → 𝐾:(-π[,]π)⟶ℝ)
3736, 6ffvelrnd 6905 . . . . . . 7 ((𝜑𝑠𝐴) → (𝐾𝑠) ∈ ℝ)
3834, 37remulcld 10863 . . . . . 6 ((𝜑𝑠𝐴) → ((𝐻𝑠) · (𝐾𝑠)) ∈ ℝ)
3918fvmpt2 6829 . . . . . 6 ((𝑠 ∈ (-π[,]π) ∧ ((𝐻𝑠) · (𝐾𝑠)) ∈ ℝ) → (𝑈𝑠) = ((𝐻𝑠) · (𝐾𝑠)))
406, 38, 39syl2anc 587 . . . . 5 ((𝜑𝑠𝐴) → (𝑈𝑠) = ((𝐻𝑠) · (𝐾𝑠)))
41 0red 10836 . . . . . . . . 9 ((𝜑𝑠𝐴) → 0 ∈ ℝ)
428adantr 484 . . . . . . . . . . . 12 ((𝜑𝑠𝐴) → 𝐹:ℝ⟶ℝ)
4310adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑠𝐴) → 𝑋 ∈ ℝ)
44 pire 25348 . . . . . . . . . . . . . . . . 17 π ∈ ℝ
4544renegcli 11139 . . . . . . . . . . . . . . . 16 -π ∈ ℝ
46 iccssre 13017 . . . . . . . . . . . . . . . 16 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆ ℝ)
4745, 44, 46mp2an 692 . . . . . . . . . . . . . . 15 (-π[,]π) ⊆ ℝ
484sseli 3896 . . . . . . . . . . . . . . 15 (𝑠𝐴𝑠 ∈ (-π[,]π))
4947, 48sseldi 3899 . . . . . . . . . . . . . 14 (𝑠𝐴𝑠 ∈ ℝ)
5049adantl 485 . . . . . . . . . . . . 13 ((𝜑𝑠𝐴) → 𝑠 ∈ ℝ)
5143, 50readdcld 10862 . . . . . . . . . . . 12 ((𝜑𝑠𝐴) → (𝑋 + 𝑠) ∈ ℝ)
5242, 51ffvelrnd 6905 . . . . . . . . . . 11 ((𝜑𝑠𝐴) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
5312, 14ifcld 4485 . . . . . . . . . . . 12 (𝜑 → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℝ)
5453adantr 484 . . . . . . . . . . 11 ((𝜑𝑠𝐴) → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℝ)
5552, 54resubcld 11260 . . . . . . . . . 10 ((𝜑𝑠𝐴) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) ∈ ℝ)
56 simpr 488 . . . . . . . . . . . . . 14 ((𝜑𝑠𝐴) → 𝑠𝐴)
572, 56sseldi 3899 . . . . . . . . . . . . 13 ((𝜑𝑠𝐴) → 𝑠 ∈ ((-π[,]π) ∖ {0}))
5857eldifbd 3879 . . . . . . . . . . . 12 ((𝜑𝑠𝐴) → ¬ 𝑠 ∈ {0})
59 velsn 4557 . . . . . . . . . . . 12 (𝑠 ∈ {0} ↔ 𝑠 = 0)
6058, 59sylnib 331 . . . . . . . . . . 11 ((𝜑𝑠𝐴) → ¬ 𝑠 = 0)
6160neqned 2947 . . . . . . . . . 10 ((𝜑𝑠𝐴) → 𝑠 ≠ 0)
6255, 50, 61redivcld 11660 . . . . . . . . 9 ((𝜑𝑠𝐴) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠) ∈ ℝ)
6341, 62ifcld 4485 . . . . . . . 8 ((𝜑𝑠𝐴) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) ∈ ℝ)
6416fvmpt2 6829 . . . . . . . 8 ((𝑠 ∈ (-π[,]π) ∧ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) ∈ ℝ) → (𝐻𝑠) = if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
656, 63, 64syl2anc 587 . . . . . . 7 ((𝜑𝑠𝐴) → (𝐻𝑠) = if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
6660iffalsed 4450 . . . . . . 7 ((𝜑𝑠𝐴) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))
6765, 66eqtrd 2777 . . . . . 6 ((𝜑𝑠𝐴) → (𝐻𝑠) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))
68 1red 10834 . . . . . . . . 9 ((𝜑𝑠𝐴) → 1 ∈ ℝ)
69 2re 11904 . . . . . . . . . . . 12 2 ∈ ℝ
7069a1i 11 . . . . . . . . . . 11 ((𝜑𝑠𝐴) → 2 ∈ ℝ)
7150rehalfcld 12077 . . . . . . . . . . . 12 ((𝜑𝑠𝐴) → (𝑠 / 2) ∈ ℝ)
7271resincld 15704 . . . . . . . . . . 11 ((𝜑𝑠𝐴) → (sin‘(𝑠 / 2)) ∈ ℝ)
7370, 72remulcld 10863 . . . . . . . . . 10 ((𝜑𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ∈ ℝ)
74 2cnd 11908 . . . . . . . . . . 11 ((𝜑𝑠𝐴) → 2 ∈ ℂ)
7572recnd 10861 . . . . . . . . . . 11 ((𝜑𝑠𝐴) → (sin‘(𝑠 / 2)) ∈ ℂ)
76 2ne0 11934 . . . . . . . . . . . 12 2 ≠ 0
7776a1i 11 . . . . . . . . . . 11 ((𝜑𝑠𝐴) → 2 ≠ 0)
78 fourierdlem44 43367 . . . . . . . . . . . 12 ((𝑠 ∈ (-π[,]π) ∧ 𝑠 ≠ 0) → (sin‘(𝑠 / 2)) ≠ 0)
796, 61, 78syl2anc 587 . . . . . . . . . . 11 ((𝜑𝑠𝐴) → (sin‘(𝑠 / 2)) ≠ 0)
8074, 75, 77, 79mulne0d 11484 . . . . . . . . . 10 ((𝜑𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
8150, 73, 80redivcld 11660 . . . . . . . . 9 ((𝜑𝑠𝐴) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ ℝ)
8268, 81ifcld 4485 . . . . . . . 8 ((𝜑𝑠𝐴) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ℝ)
8317fvmpt2 6829 . . . . . . . 8 ((𝑠 ∈ (-π[,]π) ∧ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ℝ) → (𝐾𝑠) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
846, 82, 83syl2anc 587 . . . . . . 7 ((𝜑𝑠𝐴) → (𝐾𝑠) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
8560iffalsed 4450 . . . . . . 7 ((𝜑𝑠𝐴) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
8684, 85eqtrd 2777 . . . . . 6 ((𝜑𝑠𝐴) → (𝐾𝑠) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
8767, 86oveq12d 7231 . . . . 5 ((𝜑𝑠𝐴) → ((𝐻𝑠) · (𝐾𝑠)) = ((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
8855recnd 10861 . . . . . 6 ((𝜑𝑠𝐴) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) ∈ ℂ)
8950recnd 10861 . . . . . 6 ((𝜑𝑠𝐴) → 𝑠 ∈ ℂ)
9074, 75mulcld 10853 . . . . . 6 ((𝜑𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
9188, 89, 90, 61, 80dmdcan2d 11638 . . . . 5 ((𝜑𝑠𝐴) → ((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / (2 · (sin‘(𝑠 / 2)))))
9240, 87, 913eqtrd 2781 . . . 4 ((𝜑𝑠𝐴) → (𝑈𝑠) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / (2 · (sin‘(𝑠 / 2)))))
9392adantlr 715 . . 3 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝑈𝑠) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / (2 · (sin‘(𝑠 / 2)))))
9422ad2antlr 727 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 𝑛 ∈ ℝ)
95 1red 10834 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 1 ∈ ℝ)
9695rehalfcld 12077 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (1 / 2) ∈ ℝ)
9794, 96readdcld 10862 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝑛 + (1 / 2)) ∈ ℝ)
9849adantl 485 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 𝑠 ∈ ℝ)
9997, 98remulcld 10863 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((𝑛 + (1 / 2)) · 𝑠) ∈ ℝ)
10099resincld 15704 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
10123fvmpt2 6829 . . . 4 ((𝑠 ∈ (-π[,]π) ∧ (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
1027, 100, 101syl2anc 587 . . 3 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
10393, 102oveq12d 7231 . 2 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((𝑈𝑠) · (𝑆𝑠)) = ((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / (2 · (sin‘(𝑠 / 2)))) · (sin‘((𝑛 + (1 / 2)) · 𝑠))))
10488adantlr 715 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) ∈ ℂ)
10590adantlr 715 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
106100recnd 10861 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℂ)
10780adantlr 715 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
108104, 105, 106, 107div32d 11631 . . 3 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / (2 · (sin‘(𝑠 / 2)))) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · (sin‘(𝑠 / 2))))))
10922adantr 484 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → 𝑛 ∈ ℝ)
110 halfre 12044 . . . . . . . . . . . . . 14 (1 / 2) ∈ ℝ
111110a1i 11 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (1 / 2) ∈ ℝ)
112109, 111readdcld 10862 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (𝑛 + (1 / 2)) ∈ ℝ)
11349adantl 485 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → 𝑠 ∈ ℝ)
114112, 113remulcld 10863 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((𝑛 + (1 / 2)) · 𝑠) ∈ ℝ)
115114resincld 15704 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
116115recnd 10861 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℂ)
11769a1i 11 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → 2 ∈ ℝ)
118113rehalfcld 12077 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (𝑠 / 2) ∈ ℝ)
119118resincld 15704 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (sin‘(𝑠 / 2)) ∈ ℝ)
120117, 119remulcld 10863 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ∈ ℝ)
121120recnd 10861 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
122 picn 25349 . . . . . . . . . 10 π ∈ ℂ
123122a1i 11 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → π ∈ ℂ)
124 2cnd 11908 . . . . . . . . . . 11 (𝑠𝐴 → 2 ∈ ℂ)
125 rehalfcl 12056 . . . . . . . . . . . . 13 (𝑠 ∈ ℝ → (𝑠 / 2) ∈ ℝ)
126 resincl 15701 . . . . . . . . . . . . 13 ((𝑠 / 2) ∈ ℝ → (sin‘(𝑠 / 2)) ∈ ℝ)
12749, 125, 1263syl 18 . . . . . . . . . . . 12 (𝑠𝐴 → (sin‘(𝑠 / 2)) ∈ ℝ)
128127recnd 10861 . . . . . . . . . . 11 (𝑠𝐴 → (sin‘(𝑠 / 2)) ∈ ℂ)
12976a1i 11 . . . . . . . . . . 11 (𝑠𝐴 → 2 ≠ 0)
130 eldifsni 4703 . . . . . . . . . . . . 13 (𝑠 ∈ ((-π[,]π) ∖ {0}) → 𝑠 ≠ 0)
131130, 1eleq2s 2856 . . . . . . . . . . . 12 (𝑠𝐴𝑠 ≠ 0)
13248, 131, 78syl2anc 587 . . . . . . . . . . 11 (𝑠𝐴 → (sin‘(𝑠 / 2)) ≠ 0)
133124, 128, 129, 132mulne0d 11484 . . . . . . . . . 10 (𝑠𝐴 → (2 · (sin‘(𝑠 / 2))) ≠ 0)
134133adantl 485 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
135 0re 10835 . . . . . . . . . . 11 0 ∈ ℝ
136 pipos 25350 . . . . . . . . . . 11 0 < π
137135, 136gtneii 10944 . . . . . . . . . 10 π ≠ 0
138137a1i 11 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → π ≠ 0)
139116, 121, 123, 134, 138divdiv1d 11639 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · (sin‘(𝑠 / 2)))) / π) = ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · (sin‘(𝑠 / 2))) · π)))
140 2cnd 11908 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → 2 ∈ ℂ)
141128adantl 485 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (sin‘(𝑠 / 2)) ∈ ℂ)
142140, 141, 123mulassd 10856 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((2 · (sin‘(𝑠 / 2))) · π) = (2 · ((sin‘(𝑠 / 2)) · π)))
143142oveq2d 7229 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · (sin‘(𝑠 / 2))) · π)) = ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · ((sin‘(𝑠 / 2)) · π))))
144141, 123mulcomd 10854 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((sin‘(𝑠 / 2)) · π) = (π · (sin‘(𝑠 / 2))))
145144oveq2d 7229 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (2 · ((sin‘(𝑠 / 2)) · π)) = (2 · (π · (sin‘(𝑠 / 2)))))
146140, 123, 141mulassd 10856 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((2 · π) · (sin‘(𝑠 / 2))) = (2 · (π · (sin‘(𝑠 / 2)))))
147145, 146eqtr4d 2780 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (2 · ((sin‘(𝑠 / 2)) · π)) = ((2 · π) · (sin‘(𝑠 / 2))))
148147oveq2d 7229 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · ((sin‘(𝑠 / 2)) · π))) = ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
149139, 143, 1483eqtrd 2781 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · (sin‘(𝑠 / 2)))) / π) = ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
150149oveq2d 7229 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (π · (((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · (sin‘(𝑠 / 2)))) / π)) = (π · ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))
151115, 120, 134redivcld 11660 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · (sin‘(𝑠 / 2)))) ∈ ℝ)
152151recnd 10861 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · (sin‘(𝑠 / 2)))) ∈ ℂ)
153152, 123, 138divcan2d 11610 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (π · (((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · (sin‘(𝑠 / 2)))) / π)) = ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · (sin‘(𝑠 / 2)))))
154 fourierdlem66.d . . . . . . . . . 10 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
155154dirkerval2 43310 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ ℝ) → ((𝐷𝑛)‘𝑠) = if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))
15649, 155sylan2 596 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((𝐷𝑛)‘𝑠) = if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))
157 fourierdlem24 43347 . . . . . . . . . . . 12 (𝑠 ∈ ((-π[,]π) ∖ {0}) → (𝑠 mod (2 · π)) ≠ 0)
158157, 1eleq2s 2856 . . . . . . . . . . 11 (𝑠𝐴 → (𝑠 mod (2 · π)) ≠ 0)
159158neneqd 2945 . . . . . . . . . 10 (𝑠𝐴 → ¬ (𝑠 mod (2 · π)) = 0)
160159adantl 485 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ¬ (𝑠 mod (2 · π)) = 0)
161160iffalsed 4450 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))) = ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
162156, 161eqtr2d 2778 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))) = ((𝐷𝑛)‘𝑠))
163162oveq2d 7229 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (π · ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))) = (π · ((𝐷𝑛)‘𝑠)))
164150, 153, 1633eqtr3d 2785 . . . . 5 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · (sin‘(𝑠 / 2)))) = (π · ((𝐷𝑛)‘𝑠)))
165164oveq2d 7229 . . . 4 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · (sin‘(𝑠 / 2))))) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · (π · ((𝐷𝑛)‘𝑠))))
166165adantll 714 . . 3 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · (sin‘(𝑠 / 2))))) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · (π · ((𝐷𝑛)‘𝑠))))
167122a1i 11 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → π ∈ ℂ)
168154dirkerre 43311 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ ℝ) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
16949, 168sylan2 596 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
170169recnd 10861 . . . . 5 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((𝐷𝑛)‘𝑠) ∈ ℂ)
171170adantll 714 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((𝐷𝑛)‘𝑠) ∈ ℂ)
172104, 167, 171mul12d 11041 . . 3 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · (π · ((𝐷𝑛)‘𝑠))) = (π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))))
173108, 166, 1723eqtrd 2781 . 2 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / (2 · (sin‘(𝑠 / 2)))) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) = (π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))))
17431, 103, 1733eqtrd 2781 1 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝐺𝑠) = (π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1543  wcel 2110  wne 2940  cdif 3863  wss 3866  ifcif 4439  {csn 4541   class class class wbr 5053  cmpt 5135  wf 6376  cfv 6380  (class class class)co 7213  cc 10727  cr 10728  0cc0 10729  1c1 10730   + caddc 10732   · cmul 10734   < clt 10867  cmin 11062  -cneg 11063   / cdiv 11489  cn 11830  2c2 11885  [,]cicc 12938   mod cmo 13442  sincsin 15625  πcpi 15628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807  ax-addf 10808  ax-mulf 10809
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-er 8391  df-map 8510  df-pm 8511  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-fi 9027  df-sup 9058  df-inf 9059  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-ioo 12939  df-ioc 12940  df-ico 12941  df-icc 12942  df-fz 13096  df-fzo 13239  df-fl 13367  df-mod 13443  df-seq 13575  df-exp 13636  df-fac 13840  df-bc 13869  df-hash 13897  df-shft 14630  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-limsup 15032  df-clim 15049  df-rlim 15050  df-sum 15250  df-ef 15629  df-sin 15631  df-cos 15632  df-pi 15634  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-starv 16817  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-hom 16826  df-cco 16827  df-rest 16927  df-topn 16928  df-0g 16946  df-gsum 16947  df-topgen 16948  df-pt 16949  df-prds 16952  df-xrs 17007  df-qtop 17012  df-imas 17013  df-xps 17015  df-mre 17089  df-mrc 17090  df-acs 17092  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-submnd 18219  df-mulg 18489  df-cntz 18711  df-cmn 19172  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-fbas 20360  df-fg 20361  df-cnfld 20364  df-top 21791  df-topon 21808  df-topsp 21830  df-bases 21843  df-cld 21916  df-ntr 21917  df-cls 21918  df-nei 21995  df-lp 22033  df-perf 22034  df-cn 22124  df-cnp 22125  df-haus 22212  df-tx 22459  df-hmeo 22652  df-fil 22743  df-fm 22835  df-flim 22836  df-flf 22837  df-xms 23218  df-ms 23219  df-tms 23220  df-cncf 23775  df-limc 24763  df-dv 24764
This theorem is referenced by:  fourierdlem95  43417
  Copyright terms: Public domain W3C validator