Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem66 Structured version   Visualization version   GIF version

Theorem fourierdlem66 46177
Description: Value of the 𝐺 function when the argument is not zero. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem66.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem66.x (𝜑𝑋 ∈ ℝ)
fourierdlem66.y (𝜑𝑌 ∈ ℝ)
fourierdlem66.w (𝜑𝑊 ∈ ℝ)
fourierdlem66.d 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
fourierdlem66.h 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
fourierdlem66.k 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
fourierdlem66.u 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
fourierdlem66.s 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠)))
fourierdlem66.g 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
fourierdlem66.a 𝐴 = ((-π[,]π) ∖ {0})
Assertion
Ref Expression
fourierdlem66 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝐺𝑠) = (π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))))
Distinct variable groups:   𝑛,𝑠   𝜑,𝑠
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑛,𝑠)   𝐷(𝑛,𝑠)   𝑆(𝑛,𝑠)   𝑈(𝑛,𝑠)   𝐹(𝑛,𝑠)   𝐺(𝑛,𝑠)   𝐻(𝑛,𝑠)   𝐾(𝑛,𝑠)   𝑊(𝑛,𝑠)   𝑋(𝑛,𝑠)   𝑌(𝑛,𝑠)

Proof of Theorem fourierdlem66
StepHypRef Expression
1 fourierdlem66.a . . . . . . . 8 𝐴 = ((-π[,]π) ∖ {0})
21eqimssi 4010 . . . . . . 7 𝐴 ⊆ ((-π[,]π) ∖ {0})
3 difss 4102 . . . . . . 7 ((-π[,]π) ∖ {0}) ⊆ (-π[,]π)
42, 3sstri 3959 . . . . . 6 𝐴 ⊆ (-π[,]π)
54a1i 11 . . . . 5 (𝜑𝐴 ⊆ (-π[,]π))
65sselda 3949 . . . 4 ((𝜑𝑠𝐴) → 𝑠 ∈ (-π[,]π))
76adantlr 715 . . 3 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 𝑠 ∈ (-π[,]π))
8 fourierdlem66.f . . . . . . . 8 (𝜑𝐹:ℝ⟶ℝ)
98adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝐹:ℝ⟶ℝ)
10 fourierdlem66.x . . . . . . . 8 (𝜑𝑋 ∈ ℝ)
1110adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ ℝ)
12 fourierdlem66.y . . . . . . . 8 (𝜑𝑌 ∈ ℝ)
1312adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑌 ∈ ℝ)
14 fourierdlem66.w . . . . . . . 8 (𝜑𝑊 ∈ ℝ)
1514adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑊 ∈ ℝ)
16 fourierdlem66.h . . . . . . 7 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
17 fourierdlem66.k . . . . . . 7 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
18 fourierdlem66.u . . . . . . 7 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
199, 11, 13, 15, 16, 17, 18fourierdlem55 46166 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝑈:(-π[,]π)⟶ℝ)
2019adantr 480 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 𝑈:(-π[,]π)⟶ℝ)
2120, 7ffvelcdmd 7060 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝑈𝑠) ∈ ℝ)
22 nnre 12200 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
23 fourierdlem66.s . . . . . . . 8 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠)))
2423fourierdlem5 46117 . . . . . . 7 (𝑛 ∈ ℝ → 𝑆:(-π[,]π)⟶ℝ)
2522, 24syl 17 . . . . . 6 (𝑛 ∈ ℕ → 𝑆:(-π[,]π)⟶ℝ)
2625ad2antlr 727 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 𝑆:(-π[,]π)⟶ℝ)
2726, 7ffvelcdmd 7060 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝑆𝑠) ∈ ℝ)
2821, 27remulcld 11211 . . 3 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((𝑈𝑠) · (𝑆𝑠)) ∈ ℝ)
29 fourierdlem66.g . . . 4 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
3029fvmpt2 6982 . . 3 ((𝑠 ∈ (-π[,]π) ∧ ((𝑈𝑠) · (𝑆𝑠)) ∈ ℝ) → (𝐺𝑠) = ((𝑈𝑠) · (𝑆𝑠)))
317, 28, 30syl2anc 584 . 2 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝐺𝑠) = ((𝑈𝑠) · (𝑆𝑠)))
328, 10, 12, 14, 16fourierdlem9 46121 . . . . . . . . 9 (𝜑𝐻:(-π[,]π)⟶ℝ)
3332adantr 480 . . . . . . . 8 ((𝜑𝑠𝐴) → 𝐻:(-π[,]π)⟶ℝ)
3433, 6ffvelcdmd 7060 . . . . . . 7 ((𝜑𝑠𝐴) → (𝐻𝑠) ∈ ℝ)
3517fourierdlem43 46155 . . . . . . . . 9 𝐾:(-π[,]π)⟶ℝ
3635a1i 11 . . . . . . . 8 ((𝜑𝑠𝐴) → 𝐾:(-π[,]π)⟶ℝ)
3736, 6ffvelcdmd 7060 . . . . . . 7 ((𝜑𝑠𝐴) → (𝐾𝑠) ∈ ℝ)
3834, 37remulcld 11211 . . . . . 6 ((𝜑𝑠𝐴) → ((𝐻𝑠) · (𝐾𝑠)) ∈ ℝ)
3918fvmpt2 6982 . . . . . 6 ((𝑠 ∈ (-π[,]π) ∧ ((𝐻𝑠) · (𝐾𝑠)) ∈ ℝ) → (𝑈𝑠) = ((𝐻𝑠) · (𝐾𝑠)))
406, 38, 39syl2anc 584 . . . . 5 ((𝜑𝑠𝐴) → (𝑈𝑠) = ((𝐻𝑠) · (𝐾𝑠)))
41 0red 11184 . . . . . . . . 9 ((𝜑𝑠𝐴) → 0 ∈ ℝ)
428adantr 480 . . . . . . . . . . . 12 ((𝜑𝑠𝐴) → 𝐹:ℝ⟶ℝ)
4310adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑠𝐴) → 𝑋 ∈ ℝ)
44 pire 26373 . . . . . . . . . . . . . . . . 17 π ∈ ℝ
4544renegcli 11490 . . . . . . . . . . . . . . . 16 -π ∈ ℝ
46 iccssre 13397 . . . . . . . . . . . . . . . 16 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆ ℝ)
4745, 44, 46mp2an 692 . . . . . . . . . . . . . . 15 (-π[,]π) ⊆ ℝ
484sseli 3945 . . . . . . . . . . . . . . 15 (𝑠𝐴𝑠 ∈ (-π[,]π))
4947, 48sselid 3947 . . . . . . . . . . . . . 14 (𝑠𝐴𝑠 ∈ ℝ)
5049adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑠𝐴) → 𝑠 ∈ ℝ)
5143, 50readdcld 11210 . . . . . . . . . . . 12 ((𝜑𝑠𝐴) → (𝑋 + 𝑠) ∈ ℝ)
5242, 51ffvelcdmd 7060 . . . . . . . . . . 11 ((𝜑𝑠𝐴) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
5312, 14ifcld 4538 . . . . . . . . . . . 12 (𝜑 → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℝ)
5453adantr 480 . . . . . . . . . . 11 ((𝜑𝑠𝐴) → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℝ)
5552, 54resubcld 11613 . . . . . . . . . 10 ((𝜑𝑠𝐴) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) ∈ ℝ)
56 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑠𝐴) → 𝑠𝐴)
572, 56sselid 3947 . . . . . . . . . . . . 13 ((𝜑𝑠𝐴) → 𝑠 ∈ ((-π[,]π) ∖ {0}))
5857eldifbd 3930 . . . . . . . . . . . 12 ((𝜑𝑠𝐴) → ¬ 𝑠 ∈ {0})
59 velsn 4608 . . . . . . . . . . . 12 (𝑠 ∈ {0} ↔ 𝑠 = 0)
6058, 59sylnib 328 . . . . . . . . . . 11 ((𝜑𝑠𝐴) → ¬ 𝑠 = 0)
6160neqned 2933 . . . . . . . . . 10 ((𝜑𝑠𝐴) → 𝑠 ≠ 0)
6255, 50, 61redivcld 12017 . . . . . . . . 9 ((𝜑𝑠𝐴) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠) ∈ ℝ)
6341, 62ifcld 4538 . . . . . . . 8 ((𝜑𝑠𝐴) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) ∈ ℝ)
6416fvmpt2 6982 . . . . . . . 8 ((𝑠 ∈ (-π[,]π) ∧ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) ∈ ℝ) → (𝐻𝑠) = if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
656, 63, 64syl2anc 584 . . . . . . 7 ((𝜑𝑠𝐴) → (𝐻𝑠) = if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
6660iffalsed 4502 . . . . . . 7 ((𝜑𝑠𝐴) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))
6765, 66eqtrd 2765 . . . . . 6 ((𝜑𝑠𝐴) → (𝐻𝑠) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))
68 1red 11182 . . . . . . . . 9 ((𝜑𝑠𝐴) → 1 ∈ ℝ)
69 2re 12267 . . . . . . . . . . . 12 2 ∈ ℝ
7069a1i 11 . . . . . . . . . . 11 ((𝜑𝑠𝐴) → 2 ∈ ℝ)
7150rehalfcld 12436 . . . . . . . . . . . 12 ((𝜑𝑠𝐴) → (𝑠 / 2) ∈ ℝ)
7271resincld 16118 . . . . . . . . . . 11 ((𝜑𝑠𝐴) → (sin‘(𝑠 / 2)) ∈ ℝ)
7370, 72remulcld 11211 . . . . . . . . . 10 ((𝜑𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ∈ ℝ)
74 2cnd 12271 . . . . . . . . . . 11 ((𝜑𝑠𝐴) → 2 ∈ ℂ)
7572recnd 11209 . . . . . . . . . . 11 ((𝜑𝑠𝐴) → (sin‘(𝑠 / 2)) ∈ ℂ)
76 2ne0 12297 . . . . . . . . . . . 12 2 ≠ 0
7776a1i 11 . . . . . . . . . . 11 ((𝜑𝑠𝐴) → 2 ≠ 0)
78 fourierdlem44 46156 . . . . . . . . . . . 12 ((𝑠 ∈ (-π[,]π) ∧ 𝑠 ≠ 0) → (sin‘(𝑠 / 2)) ≠ 0)
796, 61, 78syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑠𝐴) → (sin‘(𝑠 / 2)) ≠ 0)
8074, 75, 77, 79mulne0d 11837 . . . . . . . . . 10 ((𝜑𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
8150, 73, 80redivcld 12017 . . . . . . . . 9 ((𝜑𝑠𝐴) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ ℝ)
8268, 81ifcld 4538 . . . . . . . 8 ((𝜑𝑠𝐴) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ℝ)
8317fvmpt2 6982 . . . . . . . 8 ((𝑠 ∈ (-π[,]π) ∧ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ℝ) → (𝐾𝑠) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
846, 82, 83syl2anc 584 . . . . . . 7 ((𝜑𝑠𝐴) → (𝐾𝑠) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
8560iffalsed 4502 . . . . . . 7 ((𝜑𝑠𝐴) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
8684, 85eqtrd 2765 . . . . . 6 ((𝜑𝑠𝐴) → (𝐾𝑠) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
8767, 86oveq12d 7408 . . . . 5 ((𝜑𝑠𝐴) → ((𝐻𝑠) · (𝐾𝑠)) = ((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
8855recnd 11209 . . . . . 6 ((𝜑𝑠𝐴) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) ∈ ℂ)
8950recnd 11209 . . . . . 6 ((𝜑𝑠𝐴) → 𝑠 ∈ ℂ)
9074, 75mulcld 11201 . . . . . 6 ((𝜑𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
9188, 89, 90, 61, 80dmdcan2d 11995 . . . . 5 ((𝜑𝑠𝐴) → ((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / (2 · (sin‘(𝑠 / 2)))))
9240, 87, 913eqtrd 2769 . . . 4 ((𝜑𝑠𝐴) → (𝑈𝑠) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / (2 · (sin‘(𝑠 / 2)))))
9392adantlr 715 . . 3 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝑈𝑠) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / (2 · (sin‘(𝑠 / 2)))))
9422ad2antlr 727 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 𝑛 ∈ ℝ)
95 1red 11182 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 1 ∈ ℝ)
9695rehalfcld 12436 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (1 / 2) ∈ ℝ)
9794, 96readdcld 11210 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝑛 + (1 / 2)) ∈ ℝ)
9849adantl 481 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 𝑠 ∈ ℝ)
9997, 98remulcld 11211 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((𝑛 + (1 / 2)) · 𝑠) ∈ ℝ)
10099resincld 16118 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
10123fvmpt2 6982 . . . 4 ((𝑠 ∈ (-π[,]π) ∧ (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
1027, 100, 101syl2anc 584 . . 3 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
10393, 102oveq12d 7408 . 2 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((𝑈𝑠) · (𝑆𝑠)) = ((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / (2 · (sin‘(𝑠 / 2)))) · (sin‘((𝑛 + (1 / 2)) · 𝑠))))
10488adantlr 715 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) ∈ ℂ)
10590adantlr 715 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
106100recnd 11209 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℂ)
10780adantlr 715 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
108104, 105, 106, 107div32d 11988 . . 3 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / (2 · (sin‘(𝑠 / 2)))) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · (sin‘(𝑠 / 2))))))
10922adantr 480 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → 𝑛 ∈ ℝ)
110 halfre 12402 . . . . . . . . . . . . . 14 (1 / 2) ∈ ℝ
111110a1i 11 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (1 / 2) ∈ ℝ)
112109, 111readdcld 11210 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (𝑛 + (1 / 2)) ∈ ℝ)
11349adantl 481 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → 𝑠 ∈ ℝ)
114112, 113remulcld 11211 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((𝑛 + (1 / 2)) · 𝑠) ∈ ℝ)
115114resincld 16118 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
116115recnd 11209 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℂ)
11769a1i 11 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → 2 ∈ ℝ)
118113rehalfcld 12436 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (𝑠 / 2) ∈ ℝ)
119118resincld 16118 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (sin‘(𝑠 / 2)) ∈ ℝ)
120117, 119remulcld 11211 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ∈ ℝ)
121120recnd 11209 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
122 picn 26374 . . . . . . . . . 10 π ∈ ℂ
123122a1i 11 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → π ∈ ℂ)
124 2cnd 12271 . . . . . . . . . . 11 (𝑠𝐴 → 2 ∈ ℂ)
125 rehalfcl 12416 . . . . . . . . . . . . 13 (𝑠 ∈ ℝ → (𝑠 / 2) ∈ ℝ)
126 resincl 16115 . . . . . . . . . . . . 13 ((𝑠 / 2) ∈ ℝ → (sin‘(𝑠 / 2)) ∈ ℝ)
12749, 125, 1263syl 18 . . . . . . . . . . . 12 (𝑠𝐴 → (sin‘(𝑠 / 2)) ∈ ℝ)
128127recnd 11209 . . . . . . . . . . 11 (𝑠𝐴 → (sin‘(𝑠 / 2)) ∈ ℂ)
12976a1i 11 . . . . . . . . . . 11 (𝑠𝐴 → 2 ≠ 0)
130 eldifsni 4757 . . . . . . . . . . . . 13 (𝑠 ∈ ((-π[,]π) ∖ {0}) → 𝑠 ≠ 0)
131130, 1eleq2s 2847 . . . . . . . . . . . 12 (𝑠𝐴𝑠 ≠ 0)
13248, 131, 78syl2anc 584 . . . . . . . . . . 11 (𝑠𝐴 → (sin‘(𝑠 / 2)) ≠ 0)
133124, 128, 129, 132mulne0d 11837 . . . . . . . . . 10 (𝑠𝐴 → (2 · (sin‘(𝑠 / 2))) ≠ 0)
134133adantl 481 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
135 0re 11183 . . . . . . . . . . 11 0 ∈ ℝ
136 pipos 26375 . . . . . . . . . . 11 0 < π
137135, 136gtneii 11293 . . . . . . . . . 10 π ≠ 0
138137a1i 11 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → π ≠ 0)
139116, 121, 123, 134, 138divdiv1d 11996 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · (sin‘(𝑠 / 2)))) / π) = ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · (sin‘(𝑠 / 2))) · π)))
140 2cnd 12271 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → 2 ∈ ℂ)
141128adantl 481 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (sin‘(𝑠 / 2)) ∈ ℂ)
142140, 141, 123mulassd 11204 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((2 · (sin‘(𝑠 / 2))) · π) = (2 · ((sin‘(𝑠 / 2)) · π)))
143142oveq2d 7406 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · (sin‘(𝑠 / 2))) · π)) = ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · ((sin‘(𝑠 / 2)) · π))))
144141, 123mulcomd 11202 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((sin‘(𝑠 / 2)) · π) = (π · (sin‘(𝑠 / 2))))
145144oveq2d 7406 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (2 · ((sin‘(𝑠 / 2)) · π)) = (2 · (π · (sin‘(𝑠 / 2)))))
146140, 123, 141mulassd 11204 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((2 · π) · (sin‘(𝑠 / 2))) = (2 · (π · (sin‘(𝑠 / 2)))))
147145, 146eqtr4d 2768 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (2 · ((sin‘(𝑠 / 2)) · π)) = ((2 · π) · (sin‘(𝑠 / 2))))
148147oveq2d 7406 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · ((sin‘(𝑠 / 2)) · π))) = ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
149139, 143, 1483eqtrd 2769 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · (sin‘(𝑠 / 2)))) / π) = ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
150149oveq2d 7406 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (π · (((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · (sin‘(𝑠 / 2)))) / π)) = (π · ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))
151115, 120, 134redivcld 12017 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · (sin‘(𝑠 / 2)))) ∈ ℝ)
152151recnd 11209 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · (sin‘(𝑠 / 2)))) ∈ ℂ)
153152, 123, 138divcan2d 11967 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (π · (((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · (sin‘(𝑠 / 2)))) / π)) = ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · (sin‘(𝑠 / 2)))))
154 fourierdlem66.d . . . . . . . . . 10 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
155154dirkerval2 46099 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ ℝ) → ((𝐷𝑛)‘𝑠) = if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))
15649, 155sylan2 593 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((𝐷𝑛)‘𝑠) = if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))
157 fourierdlem24 46136 . . . . . . . . . . . 12 (𝑠 ∈ ((-π[,]π) ∖ {0}) → (𝑠 mod (2 · π)) ≠ 0)
158157, 1eleq2s 2847 . . . . . . . . . . 11 (𝑠𝐴 → (𝑠 mod (2 · π)) ≠ 0)
159158neneqd 2931 . . . . . . . . . 10 (𝑠𝐴 → ¬ (𝑠 mod (2 · π)) = 0)
160159adantl 481 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ¬ (𝑠 mod (2 · π)) = 0)
161160iffalsed 4502 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))) = ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
162156, 161eqtr2d 2766 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))) = ((𝐷𝑛)‘𝑠))
163162oveq2d 7406 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (π · ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))) = (π · ((𝐷𝑛)‘𝑠)))
164150, 153, 1633eqtr3d 2773 . . . . 5 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · (sin‘(𝑠 / 2)))) = (π · ((𝐷𝑛)‘𝑠)))
165164oveq2d 7406 . . . 4 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · (sin‘(𝑠 / 2))))) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · (π · ((𝐷𝑛)‘𝑠))))
166165adantll 714 . . 3 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · (sin‘(𝑠 / 2))))) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · (π · ((𝐷𝑛)‘𝑠))))
167122a1i 11 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → π ∈ ℂ)
168154dirkerre 46100 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ ℝ) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
16949, 168sylan2 593 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
170169recnd 11209 . . . . 5 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((𝐷𝑛)‘𝑠) ∈ ℂ)
171170adantll 714 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((𝐷𝑛)‘𝑠) ∈ ℂ)
172104, 167, 171mul12d 11390 . . 3 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · (π · ((𝐷𝑛)‘𝑠))) = (π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))))
173108, 166, 1723eqtrd 2769 . 2 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / (2 · (sin‘(𝑠 / 2)))) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) = (π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))))
17431, 103, 1733eqtrd 2769 1 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝐺𝑠) = (π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  cdif 3914  wss 3917  ifcif 4491  {csn 4592   class class class wbr 5110  cmpt 5191  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080   < clt 11215  cmin 11412  -cneg 11413   / cdiv 11842  cn 12193  2c2 12248  [,]cicc 13316   mod cmo 13838  sincsin 16036  πcpi 16039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775
This theorem is referenced by:  fourierdlem95  46206
  Copyright terms: Public domain W3C validator