Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem66 Structured version   Visualization version   GIF version

Theorem fourierdlem66 46153
Description: Value of the 𝐺 function when the argument is not zero. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem66.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem66.x (𝜑𝑋 ∈ ℝ)
fourierdlem66.y (𝜑𝑌 ∈ ℝ)
fourierdlem66.w (𝜑𝑊 ∈ ℝ)
fourierdlem66.d 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
fourierdlem66.h 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
fourierdlem66.k 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
fourierdlem66.u 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
fourierdlem66.s 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠)))
fourierdlem66.g 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
fourierdlem66.a 𝐴 = ((-π[,]π) ∖ {0})
Assertion
Ref Expression
fourierdlem66 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝐺𝑠) = (π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))))
Distinct variable groups:   𝑛,𝑠   𝜑,𝑠
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑛,𝑠)   𝐷(𝑛,𝑠)   𝑆(𝑛,𝑠)   𝑈(𝑛,𝑠)   𝐹(𝑛,𝑠)   𝐺(𝑛,𝑠)   𝐻(𝑛,𝑠)   𝐾(𝑛,𝑠)   𝑊(𝑛,𝑠)   𝑋(𝑛,𝑠)   𝑌(𝑛,𝑠)

Proof of Theorem fourierdlem66
StepHypRef Expression
1 fourierdlem66.a . . . . . . . 8 𝐴 = ((-π[,]π) ∖ {0})
21eqimssi 3996 . . . . . . 7 𝐴 ⊆ ((-π[,]π) ∖ {0})
3 difss 4087 . . . . . . 7 ((-π[,]π) ∖ {0}) ⊆ (-π[,]π)
42, 3sstri 3945 . . . . . 6 𝐴 ⊆ (-π[,]π)
54a1i 11 . . . . 5 (𝜑𝐴 ⊆ (-π[,]π))
65sselda 3935 . . . 4 ((𝜑𝑠𝐴) → 𝑠 ∈ (-π[,]π))
76adantlr 715 . . 3 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 𝑠 ∈ (-π[,]π))
8 fourierdlem66.f . . . . . . . 8 (𝜑𝐹:ℝ⟶ℝ)
98adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝐹:ℝ⟶ℝ)
10 fourierdlem66.x . . . . . . . 8 (𝜑𝑋 ∈ ℝ)
1110adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ ℝ)
12 fourierdlem66.y . . . . . . . 8 (𝜑𝑌 ∈ ℝ)
1312adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑌 ∈ ℝ)
14 fourierdlem66.w . . . . . . . 8 (𝜑𝑊 ∈ ℝ)
1514adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑊 ∈ ℝ)
16 fourierdlem66.h . . . . . . 7 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
17 fourierdlem66.k . . . . . . 7 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
18 fourierdlem66.u . . . . . . 7 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
199, 11, 13, 15, 16, 17, 18fourierdlem55 46142 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝑈:(-π[,]π)⟶ℝ)
2019adantr 480 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 𝑈:(-π[,]π)⟶ℝ)
2120, 7ffvelcdmd 7019 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝑈𝑠) ∈ ℝ)
22 nnre 12135 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
23 fourierdlem66.s . . . . . . . 8 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠)))
2423fourierdlem5 46093 . . . . . . 7 (𝑛 ∈ ℝ → 𝑆:(-π[,]π)⟶ℝ)
2522, 24syl 17 . . . . . 6 (𝑛 ∈ ℕ → 𝑆:(-π[,]π)⟶ℝ)
2625ad2antlr 727 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 𝑆:(-π[,]π)⟶ℝ)
2726, 7ffvelcdmd 7019 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝑆𝑠) ∈ ℝ)
2821, 27remulcld 11145 . . 3 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((𝑈𝑠) · (𝑆𝑠)) ∈ ℝ)
29 fourierdlem66.g . . . 4 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
3029fvmpt2 6941 . . 3 ((𝑠 ∈ (-π[,]π) ∧ ((𝑈𝑠) · (𝑆𝑠)) ∈ ℝ) → (𝐺𝑠) = ((𝑈𝑠) · (𝑆𝑠)))
317, 28, 30syl2anc 584 . 2 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝐺𝑠) = ((𝑈𝑠) · (𝑆𝑠)))
328, 10, 12, 14, 16fourierdlem9 46097 . . . . . . . . 9 (𝜑𝐻:(-π[,]π)⟶ℝ)
3332adantr 480 . . . . . . . 8 ((𝜑𝑠𝐴) → 𝐻:(-π[,]π)⟶ℝ)
3433, 6ffvelcdmd 7019 . . . . . . 7 ((𝜑𝑠𝐴) → (𝐻𝑠) ∈ ℝ)
3517fourierdlem43 46131 . . . . . . . . 9 𝐾:(-π[,]π)⟶ℝ
3635a1i 11 . . . . . . . 8 ((𝜑𝑠𝐴) → 𝐾:(-π[,]π)⟶ℝ)
3736, 6ffvelcdmd 7019 . . . . . . 7 ((𝜑𝑠𝐴) → (𝐾𝑠) ∈ ℝ)
3834, 37remulcld 11145 . . . . . 6 ((𝜑𝑠𝐴) → ((𝐻𝑠) · (𝐾𝑠)) ∈ ℝ)
3918fvmpt2 6941 . . . . . 6 ((𝑠 ∈ (-π[,]π) ∧ ((𝐻𝑠) · (𝐾𝑠)) ∈ ℝ) → (𝑈𝑠) = ((𝐻𝑠) · (𝐾𝑠)))
406, 38, 39syl2anc 584 . . . . 5 ((𝜑𝑠𝐴) → (𝑈𝑠) = ((𝐻𝑠) · (𝐾𝑠)))
41 0red 11118 . . . . . . . . 9 ((𝜑𝑠𝐴) → 0 ∈ ℝ)
428adantr 480 . . . . . . . . . . . 12 ((𝜑𝑠𝐴) → 𝐹:ℝ⟶ℝ)
4310adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑠𝐴) → 𝑋 ∈ ℝ)
44 pire 26364 . . . . . . . . . . . . . . . . 17 π ∈ ℝ
4544renegcli 11425 . . . . . . . . . . . . . . . 16 -π ∈ ℝ
46 iccssre 13332 . . . . . . . . . . . . . . . 16 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆ ℝ)
4745, 44, 46mp2an 692 . . . . . . . . . . . . . . 15 (-π[,]π) ⊆ ℝ
484sseli 3931 . . . . . . . . . . . . . . 15 (𝑠𝐴𝑠 ∈ (-π[,]π))
4947, 48sselid 3933 . . . . . . . . . . . . . 14 (𝑠𝐴𝑠 ∈ ℝ)
5049adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑠𝐴) → 𝑠 ∈ ℝ)
5143, 50readdcld 11144 . . . . . . . . . . . 12 ((𝜑𝑠𝐴) → (𝑋 + 𝑠) ∈ ℝ)
5242, 51ffvelcdmd 7019 . . . . . . . . . . 11 ((𝜑𝑠𝐴) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
5312, 14ifcld 4523 . . . . . . . . . . . 12 (𝜑 → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℝ)
5453adantr 480 . . . . . . . . . . 11 ((𝜑𝑠𝐴) → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℝ)
5552, 54resubcld 11548 . . . . . . . . . 10 ((𝜑𝑠𝐴) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) ∈ ℝ)
56 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑠𝐴) → 𝑠𝐴)
572, 56sselid 3933 . . . . . . . . . . . . 13 ((𝜑𝑠𝐴) → 𝑠 ∈ ((-π[,]π) ∖ {0}))
5857eldifbd 3916 . . . . . . . . . . . 12 ((𝜑𝑠𝐴) → ¬ 𝑠 ∈ {0})
59 velsn 4593 . . . . . . . . . . . 12 (𝑠 ∈ {0} ↔ 𝑠 = 0)
6058, 59sylnib 328 . . . . . . . . . . 11 ((𝜑𝑠𝐴) → ¬ 𝑠 = 0)
6160neqned 2932 . . . . . . . . . 10 ((𝜑𝑠𝐴) → 𝑠 ≠ 0)
6255, 50, 61redivcld 11952 . . . . . . . . 9 ((𝜑𝑠𝐴) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠) ∈ ℝ)
6341, 62ifcld 4523 . . . . . . . 8 ((𝜑𝑠𝐴) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) ∈ ℝ)
6416fvmpt2 6941 . . . . . . . 8 ((𝑠 ∈ (-π[,]π) ∧ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) ∈ ℝ) → (𝐻𝑠) = if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
656, 63, 64syl2anc 584 . . . . . . 7 ((𝜑𝑠𝐴) → (𝐻𝑠) = if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
6660iffalsed 4487 . . . . . . 7 ((𝜑𝑠𝐴) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))
6765, 66eqtrd 2764 . . . . . 6 ((𝜑𝑠𝐴) → (𝐻𝑠) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))
68 1red 11116 . . . . . . . . 9 ((𝜑𝑠𝐴) → 1 ∈ ℝ)
69 2re 12202 . . . . . . . . . . . 12 2 ∈ ℝ
7069a1i 11 . . . . . . . . . . 11 ((𝜑𝑠𝐴) → 2 ∈ ℝ)
7150rehalfcld 12371 . . . . . . . . . . . 12 ((𝜑𝑠𝐴) → (𝑠 / 2) ∈ ℝ)
7271resincld 16052 . . . . . . . . . . 11 ((𝜑𝑠𝐴) → (sin‘(𝑠 / 2)) ∈ ℝ)
7370, 72remulcld 11145 . . . . . . . . . 10 ((𝜑𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ∈ ℝ)
74 2cnd 12206 . . . . . . . . . . 11 ((𝜑𝑠𝐴) → 2 ∈ ℂ)
7572recnd 11143 . . . . . . . . . . 11 ((𝜑𝑠𝐴) → (sin‘(𝑠 / 2)) ∈ ℂ)
76 2ne0 12232 . . . . . . . . . . . 12 2 ≠ 0
7776a1i 11 . . . . . . . . . . 11 ((𝜑𝑠𝐴) → 2 ≠ 0)
78 fourierdlem44 46132 . . . . . . . . . . . 12 ((𝑠 ∈ (-π[,]π) ∧ 𝑠 ≠ 0) → (sin‘(𝑠 / 2)) ≠ 0)
796, 61, 78syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑠𝐴) → (sin‘(𝑠 / 2)) ≠ 0)
8074, 75, 77, 79mulne0d 11772 . . . . . . . . . 10 ((𝜑𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
8150, 73, 80redivcld 11952 . . . . . . . . 9 ((𝜑𝑠𝐴) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ ℝ)
8268, 81ifcld 4523 . . . . . . . 8 ((𝜑𝑠𝐴) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ℝ)
8317fvmpt2 6941 . . . . . . . 8 ((𝑠 ∈ (-π[,]π) ∧ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ℝ) → (𝐾𝑠) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
846, 82, 83syl2anc 584 . . . . . . 7 ((𝜑𝑠𝐴) → (𝐾𝑠) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
8560iffalsed 4487 . . . . . . 7 ((𝜑𝑠𝐴) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
8684, 85eqtrd 2764 . . . . . 6 ((𝜑𝑠𝐴) → (𝐾𝑠) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
8767, 86oveq12d 7367 . . . . 5 ((𝜑𝑠𝐴) → ((𝐻𝑠) · (𝐾𝑠)) = ((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
8855recnd 11143 . . . . . 6 ((𝜑𝑠𝐴) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) ∈ ℂ)
8950recnd 11143 . . . . . 6 ((𝜑𝑠𝐴) → 𝑠 ∈ ℂ)
9074, 75mulcld 11135 . . . . . 6 ((𝜑𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
9188, 89, 90, 61, 80dmdcan2d 11930 . . . . 5 ((𝜑𝑠𝐴) → ((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / (2 · (sin‘(𝑠 / 2)))))
9240, 87, 913eqtrd 2768 . . . 4 ((𝜑𝑠𝐴) → (𝑈𝑠) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / (2 · (sin‘(𝑠 / 2)))))
9392adantlr 715 . . 3 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝑈𝑠) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / (2 · (sin‘(𝑠 / 2)))))
9422ad2antlr 727 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 𝑛 ∈ ℝ)
95 1red 11116 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 1 ∈ ℝ)
9695rehalfcld 12371 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (1 / 2) ∈ ℝ)
9794, 96readdcld 11144 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝑛 + (1 / 2)) ∈ ℝ)
9849adantl 481 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 𝑠 ∈ ℝ)
9997, 98remulcld 11145 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((𝑛 + (1 / 2)) · 𝑠) ∈ ℝ)
10099resincld 16052 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
10123fvmpt2 6941 . . . 4 ((𝑠 ∈ (-π[,]π) ∧ (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
1027, 100, 101syl2anc 584 . . 3 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
10393, 102oveq12d 7367 . 2 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((𝑈𝑠) · (𝑆𝑠)) = ((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / (2 · (sin‘(𝑠 / 2)))) · (sin‘((𝑛 + (1 / 2)) · 𝑠))))
10488adantlr 715 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) ∈ ℂ)
10590adantlr 715 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
106100recnd 11143 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℂ)
10780adantlr 715 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
108104, 105, 106, 107div32d 11923 . . 3 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / (2 · (sin‘(𝑠 / 2)))) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · (sin‘(𝑠 / 2))))))
10922adantr 480 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → 𝑛 ∈ ℝ)
110 halfre 12337 . . . . . . . . . . . . . 14 (1 / 2) ∈ ℝ
111110a1i 11 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (1 / 2) ∈ ℝ)
112109, 111readdcld 11144 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (𝑛 + (1 / 2)) ∈ ℝ)
11349adantl 481 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → 𝑠 ∈ ℝ)
114112, 113remulcld 11145 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((𝑛 + (1 / 2)) · 𝑠) ∈ ℝ)
115114resincld 16052 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
116115recnd 11143 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℂ)
11769a1i 11 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → 2 ∈ ℝ)
118113rehalfcld 12371 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (𝑠 / 2) ∈ ℝ)
119118resincld 16052 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (sin‘(𝑠 / 2)) ∈ ℝ)
120117, 119remulcld 11145 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ∈ ℝ)
121120recnd 11143 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
122 picn 26365 . . . . . . . . . 10 π ∈ ℂ
123122a1i 11 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → π ∈ ℂ)
124 2cnd 12206 . . . . . . . . . . 11 (𝑠𝐴 → 2 ∈ ℂ)
125 rehalfcl 12351 . . . . . . . . . . . . 13 (𝑠 ∈ ℝ → (𝑠 / 2) ∈ ℝ)
126 resincl 16049 . . . . . . . . . . . . 13 ((𝑠 / 2) ∈ ℝ → (sin‘(𝑠 / 2)) ∈ ℝ)
12749, 125, 1263syl 18 . . . . . . . . . . . 12 (𝑠𝐴 → (sin‘(𝑠 / 2)) ∈ ℝ)
128127recnd 11143 . . . . . . . . . . 11 (𝑠𝐴 → (sin‘(𝑠 / 2)) ∈ ℂ)
12976a1i 11 . . . . . . . . . . 11 (𝑠𝐴 → 2 ≠ 0)
130 eldifsni 4741 . . . . . . . . . . . . 13 (𝑠 ∈ ((-π[,]π) ∖ {0}) → 𝑠 ≠ 0)
131130, 1eleq2s 2846 . . . . . . . . . . . 12 (𝑠𝐴𝑠 ≠ 0)
13248, 131, 78syl2anc 584 . . . . . . . . . . 11 (𝑠𝐴 → (sin‘(𝑠 / 2)) ≠ 0)
133124, 128, 129, 132mulne0d 11772 . . . . . . . . . 10 (𝑠𝐴 → (2 · (sin‘(𝑠 / 2))) ≠ 0)
134133adantl 481 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
135 0re 11117 . . . . . . . . . . 11 0 ∈ ℝ
136 pipos 26366 . . . . . . . . . . 11 0 < π
137135, 136gtneii 11228 . . . . . . . . . 10 π ≠ 0
138137a1i 11 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → π ≠ 0)
139116, 121, 123, 134, 138divdiv1d 11931 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · (sin‘(𝑠 / 2)))) / π) = ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · (sin‘(𝑠 / 2))) · π)))
140 2cnd 12206 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → 2 ∈ ℂ)
141128adantl 481 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (sin‘(𝑠 / 2)) ∈ ℂ)
142140, 141, 123mulassd 11138 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((2 · (sin‘(𝑠 / 2))) · π) = (2 · ((sin‘(𝑠 / 2)) · π)))
143142oveq2d 7365 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · (sin‘(𝑠 / 2))) · π)) = ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · ((sin‘(𝑠 / 2)) · π))))
144141, 123mulcomd 11136 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((sin‘(𝑠 / 2)) · π) = (π · (sin‘(𝑠 / 2))))
145144oveq2d 7365 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (2 · ((sin‘(𝑠 / 2)) · π)) = (2 · (π · (sin‘(𝑠 / 2)))))
146140, 123, 141mulassd 11138 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((2 · π) · (sin‘(𝑠 / 2))) = (2 · (π · (sin‘(𝑠 / 2)))))
147145, 146eqtr4d 2767 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (2 · ((sin‘(𝑠 / 2)) · π)) = ((2 · π) · (sin‘(𝑠 / 2))))
148147oveq2d 7365 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · ((sin‘(𝑠 / 2)) · π))) = ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
149139, 143, 1483eqtrd 2768 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · (sin‘(𝑠 / 2)))) / π) = ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
150149oveq2d 7365 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (π · (((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · (sin‘(𝑠 / 2)))) / π)) = (π · ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))
151115, 120, 134redivcld 11952 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · (sin‘(𝑠 / 2)))) ∈ ℝ)
152151recnd 11143 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · (sin‘(𝑠 / 2)))) ∈ ℂ)
153152, 123, 138divcan2d 11902 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (π · (((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · (sin‘(𝑠 / 2)))) / π)) = ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · (sin‘(𝑠 / 2)))))
154 fourierdlem66.d . . . . . . . . . 10 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
155154dirkerval2 46075 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ ℝ) → ((𝐷𝑛)‘𝑠) = if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))
15649, 155sylan2 593 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((𝐷𝑛)‘𝑠) = if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))
157 fourierdlem24 46112 . . . . . . . . . . . 12 (𝑠 ∈ ((-π[,]π) ∖ {0}) → (𝑠 mod (2 · π)) ≠ 0)
158157, 1eleq2s 2846 . . . . . . . . . . 11 (𝑠𝐴 → (𝑠 mod (2 · π)) ≠ 0)
159158neneqd 2930 . . . . . . . . . 10 (𝑠𝐴 → ¬ (𝑠 mod (2 · π)) = 0)
160159adantl 481 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ¬ (𝑠 mod (2 · π)) = 0)
161160iffalsed 4487 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))) = ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
162156, 161eqtr2d 2765 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))) = ((𝐷𝑛)‘𝑠))
163162oveq2d 7365 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (π · ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))) = (π · ((𝐷𝑛)‘𝑠)))
164150, 153, 1633eqtr3d 2772 . . . . 5 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · (sin‘(𝑠 / 2)))) = (π · ((𝐷𝑛)‘𝑠)))
165164oveq2d 7365 . . . 4 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · (sin‘(𝑠 / 2))))) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · (π · ((𝐷𝑛)‘𝑠))))
166165adantll 714 . . 3 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · (sin‘(𝑠 / 2))))) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · (π · ((𝐷𝑛)‘𝑠))))
167122a1i 11 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → π ∈ ℂ)
168154dirkerre 46076 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ ℝ) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
16949, 168sylan2 593 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
170169recnd 11143 . . . . 5 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((𝐷𝑛)‘𝑠) ∈ ℂ)
171170adantll 714 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((𝐷𝑛)‘𝑠) ∈ ℂ)
172104, 167, 171mul12d 11325 . . 3 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · (π · ((𝐷𝑛)‘𝑠))) = (π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))))
173108, 166, 1723eqtrd 2768 . 2 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / (2 · (sin‘(𝑠 / 2)))) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) = (π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))))
17431, 103, 1733eqtrd 2768 1 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝐺𝑠) = (π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  cdif 3900  wss 3903  ifcif 4476  {csn 4577   class class class wbr 5092  cmpt 5173  wf 6478  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014   < clt 11149  cmin 11347  -cneg 11348   / cdiv 11777  cn 12128  2c2 12183  [,]cicc 13251   mod cmo 13773  sincsin 15970  πcpi 15973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-haus 23200  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-limc 25765  df-dv 25766
This theorem is referenced by:  fourierdlem95  46182
  Copyright terms: Public domain W3C validator