Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem66 Structured version   Visualization version   GIF version

Theorem fourierdlem66 46210
Description: Value of the 𝐺 function when the argument is not zero. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem66.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem66.x (𝜑𝑋 ∈ ℝ)
fourierdlem66.y (𝜑𝑌 ∈ ℝ)
fourierdlem66.w (𝜑𝑊 ∈ ℝ)
fourierdlem66.d 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
fourierdlem66.h 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
fourierdlem66.k 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
fourierdlem66.u 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
fourierdlem66.s 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠)))
fourierdlem66.g 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
fourierdlem66.a 𝐴 = ((-π[,]π) ∖ {0})
Assertion
Ref Expression
fourierdlem66 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝐺𝑠) = (π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))))
Distinct variable groups:   𝑛,𝑠   𝜑,𝑠
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑛,𝑠)   𝐷(𝑛,𝑠)   𝑆(𝑛,𝑠)   𝑈(𝑛,𝑠)   𝐹(𝑛,𝑠)   𝐺(𝑛,𝑠)   𝐻(𝑛,𝑠)   𝐾(𝑛,𝑠)   𝑊(𝑛,𝑠)   𝑋(𝑛,𝑠)   𝑌(𝑛,𝑠)

Proof of Theorem fourierdlem66
StepHypRef Expression
1 fourierdlem66.a . . . . . . . 8 𝐴 = ((-π[,]π) ∖ {0})
21eqimssi 3990 . . . . . . 7 𝐴 ⊆ ((-π[,]π) ∖ {0})
3 difss 4081 . . . . . . 7 ((-π[,]π) ∖ {0}) ⊆ (-π[,]π)
42, 3sstri 3939 . . . . . 6 𝐴 ⊆ (-π[,]π)
54a1i 11 . . . . 5 (𝜑𝐴 ⊆ (-π[,]π))
65sselda 3929 . . . 4 ((𝜑𝑠𝐴) → 𝑠 ∈ (-π[,]π))
76adantlr 715 . . 3 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 𝑠 ∈ (-π[,]π))
8 fourierdlem66.f . . . . . . . 8 (𝜑𝐹:ℝ⟶ℝ)
98adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝐹:ℝ⟶ℝ)
10 fourierdlem66.x . . . . . . . 8 (𝜑𝑋 ∈ ℝ)
1110adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ ℝ)
12 fourierdlem66.y . . . . . . . 8 (𝜑𝑌 ∈ ℝ)
1312adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑌 ∈ ℝ)
14 fourierdlem66.w . . . . . . . 8 (𝜑𝑊 ∈ ℝ)
1514adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑊 ∈ ℝ)
16 fourierdlem66.h . . . . . . 7 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
17 fourierdlem66.k . . . . . . 7 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
18 fourierdlem66.u . . . . . . 7 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
199, 11, 13, 15, 16, 17, 18fourierdlem55 46199 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝑈:(-π[,]π)⟶ℝ)
2019adantr 480 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 𝑈:(-π[,]π)⟶ℝ)
2120, 7ffvelcdmd 7013 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝑈𝑠) ∈ ℝ)
22 nnre 12127 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
23 fourierdlem66.s . . . . . . . 8 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠)))
2423fourierdlem5 46150 . . . . . . 7 (𝑛 ∈ ℝ → 𝑆:(-π[,]π)⟶ℝ)
2522, 24syl 17 . . . . . 6 (𝑛 ∈ ℕ → 𝑆:(-π[,]π)⟶ℝ)
2625ad2antlr 727 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 𝑆:(-π[,]π)⟶ℝ)
2726, 7ffvelcdmd 7013 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝑆𝑠) ∈ ℝ)
2821, 27remulcld 11137 . . 3 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((𝑈𝑠) · (𝑆𝑠)) ∈ ℝ)
29 fourierdlem66.g . . . 4 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
3029fvmpt2 6935 . . 3 ((𝑠 ∈ (-π[,]π) ∧ ((𝑈𝑠) · (𝑆𝑠)) ∈ ℝ) → (𝐺𝑠) = ((𝑈𝑠) · (𝑆𝑠)))
317, 28, 30syl2anc 584 . 2 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝐺𝑠) = ((𝑈𝑠) · (𝑆𝑠)))
328, 10, 12, 14, 16fourierdlem9 46154 . . . . . . . . 9 (𝜑𝐻:(-π[,]π)⟶ℝ)
3332adantr 480 . . . . . . . 8 ((𝜑𝑠𝐴) → 𝐻:(-π[,]π)⟶ℝ)
3433, 6ffvelcdmd 7013 . . . . . . 7 ((𝜑𝑠𝐴) → (𝐻𝑠) ∈ ℝ)
3517fourierdlem43 46188 . . . . . . . . 9 𝐾:(-π[,]π)⟶ℝ
3635a1i 11 . . . . . . . 8 ((𝜑𝑠𝐴) → 𝐾:(-π[,]π)⟶ℝ)
3736, 6ffvelcdmd 7013 . . . . . . 7 ((𝜑𝑠𝐴) → (𝐾𝑠) ∈ ℝ)
3834, 37remulcld 11137 . . . . . 6 ((𝜑𝑠𝐴) → ((𝐻𝑠) · (𝐾𝑠)) ∈ ℝ)
3918fvmpt2 6935 . . . . . 6 ((𝑠 ∈ (-π[,]π) ∧ ((𝐻𝑠) · (𝐾𝑠)) ∈ ℝ) → (𝑈𝑠) = ((𝐻𝑠) · (𝐾𝑠)))
406, 38, 39syl2anc 584 . . . . 5 ((𝜑𝑠𝐴) → (𝑈𝑠) = ((𝐻𝑠) · (𝐾𝑠)))
41 0red 11110 . . . . . . . . 9 ((𝜑𝑠𝐴) → 0 ∈ ℝ)
428adantr 480 . . . . . . . . . . . 12 ((𝜑𝑠𝐴) → 𝐹:ℝ⟶ℝ)
4310adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑠𝐴) → 𝑋 ∈ ℝ)
44 pire 26388 . . . . . . . . . . . . . . . . 17 π ∈ ℝ
4544renegcli 11417 . . . . . . . . . . . . . . . 16 -π ∈ ℝ
46 iccssre 13324 . . . . . . . . . . . . . . . 16 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆ ℝ)
4745, 44, 46mp2an 692 . . . . . . . . . . . . . . 15 (-π[,]π) ⊆ ℝ
484sseli 3925 . . . . . . . . . . . . . . 15 (𝑠𝐴𝑠 ∈ (-π[,]π))
4947, 48sselid 3927 . . . . . . . . . . . . . 14 (𝑠𝐴𝑠 ∈ ℝ)
5049adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑠𝐴) → 𝑠 ∈ ℝ)
5143, 50readdcld 11136 . . . . . . . . . . . 12 ((𝜑𝑠𝐴) → (𝑋 + 𝑠) ∈ ℝ)
5242, 51ffvelcdmd 7013 . . . . . . . . . . 11 ((𝜑𝑠𝐴) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
5312, 14ifcld 4517 . . . . . . . . . . . 12 (𝜑 → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℝ)
5453adantr 480 . . . . . . . . . . 11 ((𝜑𝑠𝐴) → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℝ)
5552, 54resubcld 11540 . . . . . . . . . 10 ((𝜑𝑠𝐴) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) ∈ ℝ)
56 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑠𝐴) → 𝑠𝐴)
572, 56sselid 3927 . . . . . . . . . . . . 13 ((𝜑𝑠𝐴) → 𝑠 ∈ ((-π[,]π) ∖ {0}))
5857eldifbd 3910 . . . . . . . . . . . 12 ((𝜑𝑠𝐴) → ¬ 𝑠 ∈ {0})
59 velsn 4587 . . . . . . . . . . . 12 (𝑠 ∈ {0} ↔ 𝑠 = 0)
6058, 59sylnib 328 . . . . . . . . . . 11 ((𝜑𝑠𝐴) → ¬ 𝑠 = 0)
6160neqned 2935 . . . . . . . . . 10 ((𝜑𝑠𝐴) → 𝑠 ≠ 0)
6255, 50, 61redivcld 11944 . . . . . . . . 9 ((𝜑𝑠𝐴) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠) ∈ ℝ)
6341, 62ifcld 4517 . . . . . . . 8 ((𝜑𝑠𝐴) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) ∈ ℝ)
6416fvmpt2 6935 . . . . . . . 8 ((𝑠 ∈ (-π[,]π) ∧ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) ∈ ℝ) → (𝐻𝑠) = if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
656, 63, 64syl2anc 584 . . . . . . 7 ((𝜑𝑠𝐴) → (𝐻𝑠) = if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
6660iffalsed 4481 . . . . . . 7 ((𝜑𝑠𝐴) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))
6765, 66eqtrd 2766 . . . . . 6 ((𝜑𝑠𝐴) → (𝐻𝑠) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))
68 1red 11108 . . . . . . . . 9 ((𝜑𝑠𝐴) → 1 ∈ ℝ)
69 2re 12194 . . . . . . . . . . . 12 2 ∈ ℝ
7069a1i 11 . . . . . . . . . . 11 ((𝜑𝑠𝐴) → 2 ∈ ℝ)
7150rehalfcld 12363 . . . . . . . . . . . 12 ((𝜑𝑠𝐴) → (𝑠 / 2) ∈ ℝ)
7271resincld 16047 . . . . . . . . . . 11 ((𝜑𝑠𝐴) → (sin‘(𝑠 / 2)) ∈ ℝ)
7370, 72remulcld 11137 . . . . . . . . . 10 ((𝜑𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ∈ ℝ)
74 2cnd 12198 . . . . . . . . . . 11 ((𝜑𝑠𝐴) → 2 ∈ ℂ)
7572recnd 11135 . . . . . . . . . . 11 ((𝜑𝑠𝐴) → (sin‘(𝑠 / 2)) ∈ ℂ)
76 2ne0 12224 . . . . . . . . . . . 12 2 ≠ 0
7776a1i 11 . . . . . . . . . . 11 ((𝜑𝑠𝐴) → 2 ≠ 0)
78 fourierdlem44 46189 . . . . . . . . . . . 12 ((𝑠 ∈ (-π[,]π) ∧ 𝑠 ≠ 0) → (sin‘(𝑠 / 2)) ≠ 0)
796, 61, 78syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑠𝐴) → (sin‘(𝑠 / 2)) ≠ 0)
8074, 75, 77, 79mulne0d 11764 . . . . . . . . . 10 ((𝜑𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
8150, 73, 80redivcld 11944 . . . . . . . . 9 ((𝜑𝑠𝐴) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ ℝ)
8268, 81ifcld 4517 . . . . . . . 8 ((𝜑𝑠𝐴) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ℝ)
8317fvmpt2 6935 . . . . . . . 8 ((𝑠 ∈ (-π[,]π) ∧ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ℝ) → (𝐾𝑠) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
846, 82, 83syl2anc 584 . . . . . . 7 ((𝜑𝑠𝐴) → (𝐾𝑠) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
8560iffalsed 4481 . . . . . . 7 ((𝜑𝑠𝐴) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
8684, 85eqtrd 2766 . . . . . 6 ((𝜑𝑠𝐴) → (𝐾𝑠) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
8767, 86oveq12d 7359 . . . . 5 ((𝜑𝑠𝐴) → ((𝐻𝑠) · (𝐾𝑠)) = ((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
8855recnd 11135 . . . . . 6 ((𝜑𝑠𝐴) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) ∈ ℂ)
8950recnd 11135 . . . . . 6 ((𝜑𝑠𝐴) → 𝑠 ∈ ℂ)
9074, 75mulcld 11127 . . . . . 6 ((𝜑𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
9188, 89, 90, 61, 80dmdcan2d 11922 . . . . 5 ((𝜑𝑠𝐴) → ((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / (2 · (sin‘(𝑠 / 2)))))
9240, 87, 913eqtrd 2770 . . . 4 ((𝜑𝑠𝐴) → (𝑈𝑠) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / (2 · (sin‘(𝑠 / 2)))))
9392adantlr 715 . . 3 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝑈𝑠) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / (2 · (sin‘(𝑠 / 2)))))
9422ad2antlr 727 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 𝑛 ∈ ℝ)
95 1red 11108 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 1 ∈ ℝ)
9695rehalfcld 12363 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (1 / 2) ∈ ℝ)
9794, 96readdcld 11136 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝑛 + (1 / 2)) ∈ ℝ)
9849adantl 481 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 𝑠 ∈ ℝ)
9997, 98remulcld 11137 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((𝑛 + (1 / 2)) · 𝑠) ∈ ℝ)
10099resincld 16047 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
10123fvmpt2 6935 . . . 4 ((𝑠 ∈ (-π[,]π) ∧ (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
1027, 100, 101syl2anc 584 . . 3 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
10393, 102oveq12d 7359 . 2 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((𝑈𝑠) · (𝑆𝑠)) = ((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / (2 · (sin‘(𝑠 / 2)))) · (sin‘((𝑛 + (1 / 2)) · 𝑠))))
10488adantlr 715 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) ∈ ℂ)
10590adantlr 715 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
106100recnd 11135 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℂ)
10780adantlr 715 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
108104, 105, 106, 107div32d 11915 . . 3 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / (2 · (sin‘(𝑠 / 2)))) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · (sin‘(𝑠 / 2))))))
10922adantr 480 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → 𝑛 ∈ ℝ)
110 halfre 12329 . . . . . . . . . . . . . 14 (1 / 2) ∈ ℝ
111110a1i 11 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (1 / 2) ∈ ℝ)
112109, 111readdcld 11136 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (𝑛 + (1 / 2)) ∈ ℝ)
11349adantl 481 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → 𝑠 ∈ ℝ)
114112, 113remulcld 11137 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((𝑛 + (1 / 2)) · 𝑠) ∈ ℝ)
115114resincld 16047 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
116115recnd 11135 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℂ)
11769a1i 11 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → 2 ∈ ℝ)
118113rehalfcld 12363 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (𝑠 / 2) ∈ ℝ)
119118resincld 16047 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (sin‘(𝑠 / 2)) ∈ ℝ)
120117, 119remulcld 11137 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ∈ ℝ)
121120recnd 11135 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
122 picn 26389 . . . . . . . . . 10 π ∈ ℂ
123122a1i 11 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → π ∈ ℂ)
124 2cnd 12198 . . . . . . . . . . 11 (𝑠𝐴 → 2 ∈ ℂ)
125 rehalfcl 12343 . . . . . . . . . . . . 13 (𝑠 ∈ ℝ → (𝑠 / 2) ∈ ℝ)
126 resincl 16044 . . . . . . . . . . . . 13 ((𝑠 / 2) ∈ ℝ → (sin‘(𝑠 / 2)) ∈ ℝ)
12749, 125, 1263syl 18 . . . . . . . . . . . 12 (𝑠𝐴 → (sin‘(𝑠 / 2)) ∈ ℝ)
128127recnd 11135 . . . . . . . . . . 11 (𝑠𝐴 → (sin‘(𝑠 / 2)) ∈ ℂ)
12976a1i 11 . . . . . . . . . . 11 (𝑠𝐴 → 2 ≠ 0)
130 eldifsni 4737 . . . . . . . . . . . . 13 (𝑠 ∈ ((-π[,]π) ∖ {0}) → 𝑠 ≠ 0)
131130, 1eleq2s 2849 . . . . . . . . . . . 12 (𝑠𝐴𝑠 ≠ 0)
13248, 131, 78syl2anc 584 . . . . . . . . . . 11 (𝑠𝐴 → (sin‘(𝑠 / 2)) ≠ 0)
133124, 128, 129, 132mulne0d 11764 . . . . . . . . . 10 (𝑠𝐴 → (2 · (sin‘(𝑠 / 2))) ≠ 0)
134133adantl 481 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
135 0re 11109 . . . . . . . . . . 11 0 ∈ ℝ
136 pipos 26390 . . . . . . . . . . 11 0 < π
137135, 136gtneii 11220 . . . . . . . . . 10 π ≠ 0
138137a1i 11 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → π ≠ 0)
139116, 121, 123, 134, 138divdiv1d 11923 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · (sin‘(𝑠 / 2)))) / π) = ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · (sin‘(𝑠 / 2))) · π)))
140 2cnd 12198 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → 2 ∈ ℂ)
141128adantl 481 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (sin‘(𝑠 / 2)) ∈ ℂ)
142140, 141, 123mulassd 11130 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((2 · (sin‘(𝑠 / 2))) · π) = (2 · ((sin‘(𝑠 / 2)) · π)))
143142oveq2d 7357 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · (sin‘(𝑠 / 2))) · π)) = ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · ((sin‘(𝑠 / 2)) · π))))
144141, 123mulcomd 11128 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((sin‘(𝑠 / 2)) · π) = (π · (sin‘(𝑠 / 2))))
145144oveq2d 7357 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (2 · ((sin‘(𝑠 / 2)) · π)) = (2 · (π · (sin‘(𝑠 / 2)))))
146140, 123, 141mulassd 11130 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((2 · π) · (sin‘(𝑠 / 2))) = (2 · (π · (sin‘(𝑠 / 2)))))
147145, 146eqtr4d 2769 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (2 · ((sin‘(𝑠 / 2)) · π)) = ((2 · π) · (sin‘(𝑠 / 2))))
148147oveq2d 7357 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · ((sin‘(𝑠 / 2)) · π))) = ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
149139, 143, 1483eqtrd 2770 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · (sin‘(𝑠 / 2)))) / π) = ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
150149oveq2d 7357 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (π · (((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · (sin‘(𝑠 / 2)))) / π)) = (π · ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))
151115, 120, 134redivcld 11944 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · (sin‘(𝑠 / 2)))) ∈ ℝ)
152151recnd 11135 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · (sin‘(𝑠 / 2)))) ∈ ℂ)
153152, 123, 138divcan2d 11894 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (π · (((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · (sin‘(𝑠 / 2)))) / π)) = ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · (sin‘(𝑠 / 2)))))
154 fourierdlem66.d . . . . . . . . . 10 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
155154dirkerval2 46132 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ ℝ) → ((𝐷𝑛)‘𝑠) = if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))
15649, 155sylan2 593 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((𝐷𝑛)‘𝑠) = if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))
157 fourierdlem24 46169 . . . . . . . . . . . 12 (𝑠 ∈ ((-π[,]π) ∖ {0}) → (𝑠 mod (2 · π)) ≠ 0)
158157, 1eleq2s 2849 . . . . . . . . . . 11 (𝑠𝐴 → (𝑠 mod (2 · π)) ≠ 0)
159158neneqd 2933 . . . . . . . . . 10 (𝑠𝐴 → ¬ (𝑠 mod (2 · π)) = 0)
160159adantl 481 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ¬ (𝑠 mod (2 · π)) = 0)
161160iffalsed 4481 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))) = ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
162156, 161eqtr2d 2767 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))) = ((𝐷𝑛)‘𝑠))
163162oveq2d 7357 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (π · ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))) = (π · ((𝐷𝑛)‘𝑠)))
164150, 153, 1633eqtr3d 2774 . . . . 5 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · (sin‘(𝑠 / 2)))) = (π · ((𝐷𝑛)‘𝑠)))
165164oveq2d 7357 . . . 4 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · (sin‘(𝑠 / 2))))) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · (π · ((𝐷𝑛)‘𝑠))))
166165adantll 714 . . 3 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / (2 · (sin‘(𝑠 / 2))))) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · (π · ((𝐷𝑛)‘𝑠))))
167122a1i 11 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → π ∈ ℂ)
168154dirkerre 46133 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ ℝ) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
16949, 168sylan2 593 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
170169recnd 11135 . . . . 5 ((𝑛 ∈ ℕ ∧ 𝑠𝐴) → ((𝐷𝑛)‘𝑠) ∈ ℂ)
171170adantll 714 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((𝐷𝑛)‘𝑠) ∈ ℂ)
172104, 167, 171mul12d 11317 . . 3 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · (π · ((𝐷𝑛)‘𝑠))) = (π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))))
173108, 166, 1723eqtrd 2770 . 2 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / (2 · (sin‘(𝑠 / 2)))) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) = (π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))))
17431, 103, 1733eqtrd 2770 1 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝐺𝑠) = (π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  cdif 3894  wss 3897  ifcif 4470  {csn 4571   class class class wbr 5086  cmpt 5167  wf 6472  cfv 6476  (class class class)co 7341  cc 10999  cr 11000  0cc0 11001  1c1 11002   + caddc 11004   · cmul 11006   < clt 11141  cmin 11339  -cneg 11340   / cdiv 11769  cn 12120  2c2 12175  [,]cicc 13243   mod cmo 13768  sincsin 15965  πcpi 15968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079  ax-addf 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-q 12842  df-rp 12886  df-xneg 13006  df-xadd 13007  df-xmul 13008  df-ioo 13244  df-ioc 13245  df-ico 13246  df-icc 13247  df-fz 13403  df-fzo 13550  df-fl 13691  df-mod 13769  df-seq 13904  df-exp 13964  df-fac 14176  df-bc 14205  df-hash 14233  df-shft 14969  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-limsup 15373  df-clim 15390  df-rlim 15391  df-sum 15589  df-ef 15969  df-sin 15971  df-cos 15972  df-pi 15974  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-starv 17171  df-sca 17172  df-vsca 17173  df-ip 17174  df-tset 17175  df-ple 17176  df-ds 17178  df-unif 17179  df-hom 17180  df-cco 17181  df-rest 17321  df-topn 17322  df-0g 17340  df-gsum 17341  df-topgen 17342  df-pt 17343  df-prds 17346  df-xrs 17401  df-qtop 17406  df-imas 17407  df-xps 17409  df-mre 17483  df-mrc 17484  df-acs 17486  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19224  df-cmn 19689  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-fbas 21283  df-fg 21284  df-cnfld 21287  df-top 22804  df-topon 22821  df-topsp 22843  df-bases 22856  df-cld 22929  df-ntr 22930  df-cls 22931  df-nei 23008  df-lp 23046  df-perf 23047  df-cn 23137  df-cnp 23138  df-haus 23225  df-tx 23472  df-hmeo 23665  df-fil 23756  df-fm 23848  df-flim 23849  df-flf 23850  df-xms 24230  df-ms 24231  df-tms 24232  df-cncf 24793  df-limc 25789  df-dv 25790
This theorem is referenced by:  fourierdlem95  46239
  Copyright terms: Public domain W3C validator