| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > f1omoOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of f1omo 48869 as of 24-Nov-2025. (Contributed by Zhi Wang, 19-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| f1omo.1 | ⊢ (𝜑 → 𝐹 = (𝐴 × {1o})) |
| Ref | Expression |
|---|---|
| f1omoOLD | ⊢ (𝜑 → ∃*𝑦 𝑦 ∈ (𝐹‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1oex 8446 | . . . 4 ⊢ 1o ∈ V | |
| 2 | eqid 2730 | . . . 4 ⊢ ((𝐴 × {1o})‘𝑋) = ((𝐴 × {1o})‘𝑋) | |
| 3 | 1, 2 | fvconst0ci 48867 | . . 3 ⊢ (((𝐴 × {1o})‘𝑋) = ∅ ∨ ((𝐴 × {1o})‘𝑋) = 1o) |
| 4 | mo0 48792 | . . . 4 ⊢ (((𝐴 × {1o})‘𝑋) = ∅ → ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋)) | |
| 5 | el1o 8461 | . . . . . . . 8 ⊢ (𝑦 ∈ 1o ↔ 𝑦 = ∅) | |
| 6 | el1o 8461 | . . . . . . . 8 ⊢ (𝑥 ∈ 1o ↔ 𝑥 = ∅) | |
| 7 | eqtr3 2752 | . . . . . . . 8 ⊢ ((𝑦 = ∅ ∧ 𝑥 = ∅) → 𝑦 = 𝑥) | |
| 8 | 5, 6, 7 | syl2anb 598 | . . . . . . 7 ⊢ ((𝑦 ∈ 1o ∧ 𝑥 ∈ 1o) → 𝑦 = 𝑥) |
| 9 | 8 | gen2 1796 | . . . . . 6 ⊢ ∀𝑦∀𝑥((𝑦 ∈ 1o ∧ 𝑥 ∈ 1o) → 𝑦 = 𝑥) |
| 10 | eleq1w 2812 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ 1o ↔ 𝑥 ∈ 1o)) | |
| 11 | 10 | mo4 2560 | . . . . . 6 ⊢ (∃*𝑦 𝑦 ∈ 1o ↔ ∀𝑦∀𝑥((𝑦 ∈ 1o ∧ 𝑥 ∈ 1o) → 𝑦 = 𝑥)) |
| 12 | 9, 11 | mpbir 231 | . . . . 5 ⊢ ∃*𝑦 𝑦 ∈ 1o |
| 13 | eleq2w2 2726 | . . . . . 6 ⊢ (((𝐴 × {1o})‘𝑋) = 1o → (𝑦 ∈ ((𝐴 × {1o})‘𝑋) ↔ 𝑦 ∈ 1o)) | |
| 14 | 13 | mobidv 2543 | . . . . 5 ⊢ (((𝐴 × {1o})‘𝑋) = 1o → (∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋) ↔ ∃*𝑦 𝑦 ∈ 1o)) |
| 15 | 12, 14 | mpbiri 258 | . . . 4 ⊢ (((𝐴 × {1o})‘𝑋) = 1o → ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋)) |
| 16 | 4, 15 | jaoi 857 | . . 3 ⊢ ((((𝐴 × {1o})‘𝑋) = ∅ ∨ ((𝐴 × {1o})‘𝑋) = 1o) → ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋)) |
| 17 | 3, 16 | ax-mp 5 | . 2 ⊢ ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋) |
| 18 | f1omo.1 | . . . . 5 ⊢ (𝜑 → 𝐹 = (𝐴 × {1o})) | |
| 19 | 18 | fveq1d 6862 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑋) = ((𝐴 × {1o})‘𝑋)) |
| 20 | 19 | eleq2d 2815 | . . 3 ⊢ (𝜑 → (𝑦 ∈ (𝐹‘𝑋) ↔ 𝑦 ∈ ((𝐴 × {1o})‘𝑋))) |
| 21 | 20 | mobidv 2543 | . 2 ⊢ (𝜑 → (∃*𝑦 𝑦 ∈ (𝐹‘𝑋) ↔ ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋))) |
| 22 | 17, 21 | mpbiri 258 | 1 ⊢ (𝜑 → ∃*𝑦 𝑦 ∈ (𝐹‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ∃*wmo 2532 ∅c0 4298 {csn 4591 × cxp 5638 ‘cfv 6513 1oc1o 8429 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-fv 6521 df-1o 8436 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |