| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mdet0f1o | Structured version Visualization version GIF version | ||
| Description: The determinant function for 0-dimensional matrices on a given ring is a bijection from the singleton containing the empty set (empty matrix) onto the singleton containing the unity element of that ring. (Contributed by AV, 28-Feb-2019.) |
| Ref | Expression |
|---|---|
| mdet0f1o | ⊢ (𝑅 ∈ Ring → (∅ maDet 𝑅):{∅}–1-1-onto→{(1r‘𝑅)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdet0pr 22546 | . 2 ⊢ (𝑅 ∈ Ring → (∅ maDet 𝑅) = {〈∅, (1r‘𝑅)〉}) | |
| 2 | 0ex 5287 | . . . 4 ⊢ ∅ ∈ V | |
| 3 | fvex 6899 | . . . 4 ⊢ (1r‘𝑅) ∈ V | |
| 4 | 2, 3 | f1osn 6868 | . . 3 ⊢ {〈∅, (1r‘𝑅)〉}:{∅}–1-1-onto→{(1r‘𝑅)} |
| 5 | f1oeq1 6816 | . . 3 ⊢ ((∅ maDet 𝑅) = {〈∅, (1r‘𝑅)〉} → ((∅ maDet 𝑅):{∅}–1-1-onto→{(1r‘𝑅)} ↔ {〈∅, (1r‘𝑅)〉}:{∅}–1-1-onto→{(1r‘𝑅)})) | |
| 6 | 4, 5 | mpbiri 258 | . 2 ⊢ ((∅ maDet 𝑅) = {〈∅, (1r‘𝑅)〉} → (∅ maDet 𝑅):{∅}–1-1-onto→{(1r‘𝑅)}) |
| 7 | 1, 6 | syl 17 | 1 ⊢ (𝑅 ∈ Ring → (∅ maDet 𝑅):{∅}–1-1-onto→{(1r‘𝑅)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∅c0 4313 {csn 4606 〈cop 4612 –1-1-onto→wf1o 6540 ‘cfv 6541 (class class class)co 7413 1rcur 20146 Ringcrg 20198 maDet cmdat 22538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-addf 11216 ax-mulf 11217 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1511 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-ot 4615 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-supp 8168 df-tpos 8233 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-er 8727 df-map 8850 df-ixp 8920 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-fsupp 9384 df-sup 9464 df-oi 9532 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-xnn0 12583 df-z 12597 df-dec 12717 df-uz 12861 df-rp 13017 df-fz 13530 df-fzo 13677 df-seq 14025 df-exp 14085 df-hash 14352 df-word 14535 df-lsw 14583 df-concat 14591 df-s1 14616 df-substr 14661 df-pfx 14691 df-splice 14770 df-reverse 14779 df-s2 14869 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17230 df-ress 17253 df-plusg 17286 df-mulr 17287 df-starv 17288 df-sca 17289 df-vsca 17290 df-ip 17291 df-tset 17292 df-ple 17293 df-ds 17295 df-unif 17296 df-hom 17297 df-cco 17298 df-0g 17457 df-gsum 17458 df-prds 17463 df-pws 17465 df-mre 17600 df-mrc 17601 df-acs 17603 df-mgm 18622 df-sgrp 18701 df-mnd 18717 df-mhm 18765 df-submnd 18766 df-efmnd 18851 df-grp 18923 df-minusg 18924 df-mulg 19055 df-subg 19110 df-ghm 19200 df-gim 19246 df-cntz 19304 df-oppg 19333 df-symg 19355 df-pmtr 19428 df-psgn 19477 df-evpm 19478 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-cring 20201 df-oppr 20302 df-dvdsr 20325 df-unit 20326 df-invr 20356 df-dvr 20369 df-rhm 20440 df-subrng 20514 df-subrg 20538 df-drng 20699 df-sra 21140 df-rgmod 21141 df-cnfld 21327 df-zring 21420 df-zrh 21476 df-dsmm 21706 df-frlm 21721 df-mat 22360 df-mdet 22539 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |