MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclsfil Structured version   Visualization version   GIF version

Theorem fclsfil 23514
Description: Reverse closure for the cluster point predicate. (Contributed by Mario Carneiro, 11-Apr-2015.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Hypothesis
Ref Expression
fclsval.x 𝑋 = 𝐽
Assertion
Ref Expression
fclsfil (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐹 ∈ (Fil‘𝑋))

Proof of Theorem fclsfil
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 fclsval.x . . 3 𝑋 = 𝐽
21isfcls 23513 . 2 (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
32simp2bi 1147 1 (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐹 ∈ (Fil‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  wral 3062   cuni 4909  cfv 6544  (class class class)co 7409  Topctop 22395  clsccl 22522  Filcfil 23349   fClus cfcls 23440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-fbas 20941  df-fil 23350  df-fcls 23445
This theorem is referenced by:  fclstopon  23516  fclsopni  23519  fclselbas  23520  fclsfnflim  23531  cnpfcfi  23544
  Copyright terms: Public domain W3C validator