MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclsfil Structured version   Visualization version   GIF version

Theorem fclsfil 23069
Description: Reverse closure for the cluster point predicate. (Contributed by Mario Carneiro, 11-Apr-2015.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Hypothesis
Ref Expression
fclsval.x 𝑋 = 𝐽
Assertion
Ref Expression
fclsfil (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐹 ∈ (Fil‘𝑋))

Proof of Theorem fclsfil
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 fclsval.x . . 3 𝑋 = 𝐽
21isfcls 23068 . 2 (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
32simp2bi 1144 1 (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐹 ∈ (Fil‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wral 3063   cuni 4836  cfv 6418  (class class class)co 7255  Topctop 21950  clsccl 22077  Filcfil 22904   fClus cfcls 22995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-fbas 20507  df-fil 22905  df-fcls 23000
This theorem is referenced by:  fclstopon  23071  fclsopni  23074  fclselbas  23075  fclsfnflim  23086  cnpfcfi  23099
  Copyright terms: Public domain W3C validator