| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fclsfil | Structured version Visualization version GIF version | ||
| Description: Reverse closure for the cluster point predicate. (Contributed by Mario Carneiro, 11-Apr-2015.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
| Ref | Expression |
|---|---|
| fclsval.x | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| fclsfil | ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐹 ∈ (Fil‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fclsval.x | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | isfcls 23912 | . 2 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑠 ∈ 𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))) |
| 3 | 2 | simp2bi 1146 | 1 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐹 ∈ (Fil‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∪ cuni 4861 ‘cfv 6486 (class class class)co 7353 Topctop 22796 clsccl 22921 Filcfil 23748 fClus cfcls 23839 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-fbas 21276 df-fil 23749 df-fcls 23844 |
| This theorem is referenced by: fclstopon 23915 fclsopni 23918 fclselbas 23919 fclsfnflim 23930 cnpfcfi 23943 |
| Copyright terms: Public domain | W3C validator |