MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpfcfi Structured version   Visualization version   GIF version

Theorem cnpfcfi 22645
Description: Lemma for cnpfcf 22646. If a function is continuous at a point, it respects clustering there. (Contributed by Jeff Hankins, 20-Nov-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
cnpfcfi ((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝐿)‘𝐹))

Proof of Theorem cnpfcfi
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 simp2 1134 . . 3 ((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐴 ∈ (𝐽 fClus 𝐿))
2 eqid 2798 . . . . . 6 𝐽 = 𝐽
32fclsfil 22615 . . . . 5 (𝐴 ∈ (𝐽 fClus 𝐿) → 𝐿 ∈ (Fil‘ 𝐽))
433ad2ant2 1131 . . . 4 ((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐿 ∈ (Fil‘ 𝐽))
5 fclsfnflim 22632 . . . 4 (𝐿 ∈ (Fil‘ 𝐽) → (𝐴 ∈ (𝐽 fClus 𝐿) ↔ ∃𝑓 ∈ (Fil‘ 𝐽)(𝐿𝑓𝐴 ∈ (𝐽 fLim 𝑓))))
64, 5syl 17 . . 3 ((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐴 ∈ (𝐽 fClus 𝐿) ↔ ∃𝑓 ∈ (Fil‘ 𝐽)(𝐿𝑓𝐴 ∈ (𝐽 fLim 𝑓))))
71, 6mpbid 235 . 2 ((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → ∃𝑓 ∈ (Fil‘ 𝐽)(𝐿𝑓𝐴 ∈ (𝐽 fLim 𝑓)))
8 simpl1 1188 . . . . . 6 (((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑓 ∈ (Fil‘ 𝐽) ∧ (𝐿𝑓𝐴 ∈ (𝐽 fLim 𝑓)))) → 𝐾 ∈ Top)
9 toptopon2 21523 . . . . . 6 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
108, 9sylib 221 . . . . 5 (((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑓 ∈ (Fil‘ 𝐽) ∧ (𝐿𝑓𝐴 ∈ (𝐽 fLim 𝑓)))) → 𝐾 ∈ (TopOn‘ 𝐾))
11 simprl 770 . . . . 5 (((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑓 ∈ (Fil‘ 𝐽) ∧ (𝐿𝑓𝐴 ∈ (𝐽 fLim 𝑓)))) → 𝑓 ∈ (Fil‘ 𝐽))
12 eqid 2798 . . . . . . . 8 𝐾 = 𝐾
132, 12cnpf 21852 . . . . . . 7 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → 𝐹: 𝐽 𝐾)
14133ad2ant3 1132 . . . . . 6 ((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹: 𝐽 𝐾)
1514adantr 484 . . . . 5 (((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑓 ∈ (Fil‘ 𝐽) ∧ (𝐿𝑓𝐴 ∈ (𝐽 fLim 𝑓)))) → 𝐹: 𝐽 𝐾)
16 flfssfcf 22643 . . . . 5 ((𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝑓 ∈ (Fil‘ 𝐽) ∧ 𝐹: 𝐽 𝐾) → ((𝐾 fLimf 𝑓)‘𝐹) ⊆ ((𝐾 fClusf 𝑓)‘𝐹))
1710, 11, 15, 16syl3anc 1368 . . . 4 (((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑓 ∈ (Fil‘ 𝐽) ∧ (𝐿𝑓𝐴 ∈ (𝐽 fLim 𝑓)))) → ((𝐾 fLimf 𝑓)‘𝐹) ⊆ ((𝐾 fClusf 𝑓)‘𝐹))
1812topopn 21511 . . . . . . . 8 (𝐾 ∈ Top → 𝐾𝐾)
198, 18syl 17 . . . . . . 7 (((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑓 ∈ (Fil‘ 𝐽) ∧ (𝐿𝑓𝐴 ∈ (𝐽 fLim 𝑓)))) → 𝐾𝐾)
204adantr 484 . . . . . . . 8 (((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑓 ∈ (Fil‘ 𝐽) ∧ (𝐿𝑓𝐴 ∈ (𝐽 fLim 𝑓)))) → 𝐿 ∈ (Fil‘ 𝐽))
21 filfbas 22453 . . . . . . . 8 (𝐿 ∈ (Fil‘ 𝐽) → 𝐿 ∈ (fBas‘ 𝐽))
2220, 21syl 17 . . . . . . 7 (((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑓 ∈ (Fil‘ 𝐽) ∧ (𝐿𝑓𝐴 ∈ (𝐽 fLim 𝑓)))) → 𝐿 ∈ (fBas‘ 𝐽))
23 fmfil 22549 . . . . . . 7 (( 𝐾𝐾𝐿 ∈ (fBas‘ 𝐽) ∧ 𝐹: 𝐽 𝐾) → (( 𝐾 FilMap 𝐹)‘𝐿) ∈ (Fil‘ 𝐾))
2419, 22, 15, 23syl3anc 1368 . . . . . 6 (((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑓 ∈ (Fil‘ 𝐽) ∧ (𝐿𝑓𝐴 ∈ (𝐽 fLim 𝑓)))) → (( 𝐾 FilMap 𝐹)‘𝐿) ∈ (Fil‘ 𝐾))
25 filfbas 22453 . . . . . . . 8 (𝑓 ∈ (Fil‘ 𝐽) → 𝑓 ∈ (fBas‘ 𝐽))
2625ad2antrl 727 . . . . . . 7 (((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑓 ∈ (Fil‘ 𝐽) ∧ (𝐿𝑓𝐴 ∈ (𝐽 fLim 𝑓)))) → 𝑓 ∈ (fBas‘ 𝐽))
27 simprrl 780 . . . . . . 7 (((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑓 ∈ (Fil‘ 𝐽) ∧ (𝐿𝑓𝐴 ∈ (𝐽 fLim 𝑓)))) → 𝐿𝑓)
28 fmss 22551 . . . . . . 7 ((( 𝐾𝐾𝐿 ∈ (fBas‘ 𝐽) ∧ 𝑓 ∈ (fBas‘ 𝐽)) ∧ (𝐹: 𝐽 𝐾𝐿𝑓)) → (( 𝐾 FilMap 𝐹)‘𝐿) ⊆ (( 𝐾 FilMap 𝐹)‘𝑓))
2919, 22, 26, 15, 27, 28syl32anc 1375 . . . . . 6 (((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑓 ∈ (Fil‘ 𝐽) ∧ (𝐿𝑓𝐴 ∈ (𝐽 fLim 𝑓)))) → (( 𝐾 FilMap 𝐹)‘𝐿) ⊆ (( 𝐾 FilMap 𝐹)‘𝑓))
30 fclsss2 22628 . . . . . 6 ((𝐾 ∈ (TopOn‘ 𝐾) ∧ (( 𝐾 FilMap 𝐹)‘𝐿) ∈ (Fil‘ 𝐾) ∧ (( 𝐾 FilMap 𝐹)‘𝐿) ⊆ (( 𝐾 FilMap 𝐹)‘𝑓)) → (𝐾 fClus (( 𝐾 FilMap 𝐹)‘𝑓)) ⊆ (𝐾 fClus (( 𝐾 FilMap 𝐹)‘𝐿)))
3110, 24, 29, 30syl3anc 1368 . . . . 5 (((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑓 ∈ (Fil‘ 𝐽) ∧ (𝐿𝑓𝐴 ∈ (𝐽 fLim 𝑓)))) → (𝐾 fClus (( 𝐾 FilMap 𝐹)‘𝑓)) ⊆ (𝐾 fClus (( 𝐾 FilMap 𝐹)‘𝐿)))
32 fcfval 22638 . . . . . 6 ((𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝑓 ∈ (Fil‘ 𝐽) ∧ 𝐹: 𝐽 𝐾) → ((𝐾 fClusf 𝑓)‘𝐹) = (𝐾 fClus (( 𝐾 FilMap 𝐹)‘𝑓)))
3310, 11, 15, 32syl3anc 1368 . . . . 5 (((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑓 ∈ (Fil‘ 𝐽) ∧ (𝐿𝑓𝐴 ∈ (𝐽 fLim 𝑓)))) → ((𝐾 fClusf 𝑓)‘𝐹) = (𝐾 fClus (( 𝐾 FilMap 𝐹)‘𝑓)))
34 fcfval 22638 . . . . . 6 ((𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝐿 ∈ (Fil‘ 𝐽) ∧ 𝐹: 𝐽 𝐾) → ((𝐾 fClusf 𝐿)‘𝐹) = (𝐾 fClus (( 𝐾 FilMap 𝐹)‘𝐿)))
3510, 20, 15, 34syl3anc 1368 . . . . 5 (((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑓 ∈ (Fil‘ 𝐽) ∧ (𝐿𝑓𝐴 ∈ (𝐽 fLim 𝑓)))) → ((𝐾 fClusf 𝐿)‘𝐹) = (𝐾 fClus (( 𝐾 FilMap 𝐹)‘𝐿)))
3631, 33, 353sstr4d 3962 . . . 4 (((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑓 ∈ (Fil‘ 𝐽) ∧ (𝐿𝑓𝐴 ∈ (𝐽 fLim 𝑓)))) → ((𝐾 fClusf 𝑓)‘𝐹) ⊆ ((𝐾 fClusf 𝐿)‘𝐹))
3717, 36sstrd 3925 . . 3 (((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑓 ∈ (Fil‘ 𝐽) ∧ (𝐿𝑓𝐴 ∈ (𝐽 fLim 𝑓)))) → ((𝐾 fLimf 𝑓)‘𝐹) ⊆ ((𝐾 fClusf 𝐿)‘𝐹))
38 simprrr 781 . . . 4 (((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑓 ∈ (Fil‘ 𝐽) ∧ (𝐿𝑓𝐴 ∈ (𝐽 fLim 𝑓)))) → 𝐴 ∈ (𝐽 fLim 𝑓))
39 simpl3 1190 . . . 4 (((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑓 ∈ (Fil‘ 𝐽) ∧ (𝐿𝑓𝐴 ∈ (𝐽 fLim 𝑓)))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴))
40 cnpflfi 22604 . . . 4 ((𝐴 ∈ (𝐽 fLim 𝑓) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹))
4138, 39, 40syl2anc 587 . . 3 (((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑓 ∈ (Fil‘ 𝐽) ∧ (𝐿𝑓𝐴 ∈ (𝐽 fLim 𝑓)))) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹))
4237, 41sseldd 3916 . 2 (((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑓 ∈ (Fil‘ 𝐽) ∧ (𝐿𝑓𝐴 ∈ (𝐽 fLim 𝑓)))) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝐿)‘𝐹))
437, 42rexlimddv 3250 1 ((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝐿)‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wrex 3107  wss 3881   cuni 4800  wf 6320  cfv 6324  (class class class)co 7135  fBascfbas 20079  Topctop 21498  TopOnctopon 21515   CnP ccnp 21830  Filcfil 22450   FilMap cfm 22538   fLim cflim 22539   fLimf cflf 22540   fClus cfcls 22541   fClusf cfcf 22542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-fin 8496  df-fi 8859  df-fbas 20088  df-fg 20089  df-top 21499  df-topon 21516  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-cnp 21833  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-fcls 22546  df-fcf 22547
This theorem is referenced by:  cnpfcf  22646
  Copyright terms: Public domain W3C validator