MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpfcfi Structured version   Visualization version   GIF version

Theorem cnpfcfi 23191
Description: Lemma for cnpfcf 23192. If a function is continuous at a point, it respects clustering there. (Contributed by Jeff Hankins, 20-Nov-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
cnpfcfi ((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝐿)‘𝐹))

Proof of Theorem cnpfcfi
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 simp2 1136 . . 3 ((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐴 ∈ (𝐽 fClus 𝐿))
2 eqid 2738 . . . . . 6 𝐽 = 𝐽
32fclsfil 23161 . . . . 5 (𝐴 ∈ (𝐽 fClus 𝐿) → 𝐿 ∈ (Fil‘ 𝐽))
433ad2ant2 1133 . . . 4 ((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐿 ∈ (Fil‘ 𝐽))
5 fclsfnflim 23178 . . . 4 (𝐿 ∈ (Fil‘ 𝐽) → (𝐴 ∈ (𝐽 fClus 𝐿) ↔ ∃𝑓 ∈ (Fil‘ 𝐽)(𝐿𝑓𝐴 ∈ (𝐽 fLim 𝑓))))
64, 5syl 17 . . 3 ((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐴 ∈ (𝐽 fClus 𝐿) ↔ ∃𝑓 ∈ (Fil‘ 𝐽)(𝐿𝑓𝐴 ∈ (𝐽 fLim 𝑓))))
71, 6mpbid 231 . 2 ((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → ∃𝑓 ∈ (Fil‘ 𝐽)(𝐿𝑓𝐴 ∈ (𝐽 fLim 𝑓)))
8 simpl1 1190 . . . . . 6 (((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑓 ∈ (Fil‘ 𝐽) ∧ (𝐿𝑓𝐴 ∈ (𝐽 fLim 𝑓)))) → 𝐾 ∈ Top)
9 toptopon2 22067 . . . . . 6 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
108, 9sylib 217 . . . . 5 (((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑓 ∈ (Fil‘ 𝐽) ∧ (𝐿𝑓𝐴 ∈ (𝐽 fLim 𝑓)))) → 𝐾 ∈ (TopOn‘ 𝐾))
11 simprl 768 . . . . 5 (((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑓 ∈ (Fil‘ 𝐽) ∧ (𝐿𝑓𝐴 ∈ (𝐽 fLim 𝑓)))) → 𝑓 ∈ (Fil‘ 𝐽))
12 eqid 2738 . . . . . . . 8 𝐾 = 𝐾
132, 12cnpf 22398 . . . . . . 7 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → 𝐹: 𝐽 𝐾)
14133ad2ant3 1134 . . . . . 6 ((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹: 𝐽 𝐾)
1514adantr 481 . . . . 5 (((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑓 ∈ (Fil‘ 𝐽) ∧ (𝐿𝑓𝐴 ∈ (𝐽 fLim 𝑓)))) → 𝐹: 𝐽 𝐾)
16 flfssfcf 23189 . . . . 5 ((𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝑓 ∈ (Fil‘ 𝐽) ∧ 𝐹: 𝐽 𝐾) → ((𝐾 fLimf 𝑓)‘𝐹) ⊆ ((𝐾 fClusf 𝑓)‘𝐹))
1710, 11, 15, 16syl3anc 1370 . . . 4 (((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑓 ∈ (Fil‘ 𝐽) ∧ (𝐿𝑓𝐴 ∈ (𝐽 fLim 𝑓)))) → ((𝐾 fLimf 𝑓)‘𝐹) ⊆ ((𝐾 fClusf 𝑓)‘𝐹))
1812topopn 22055 . . . . . . . 8 (𝐾 ∈ Top → 𝐾𝐾)
198, 18syl 17 . . . . . . 7 (((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑓 ∈ (Fil‘ 𝐽) ∧ (𝐿𝑓𝐴 ∈ (𝐽 fLim 𝑓)))) → 𝐾𝐾)
204adantr 481 . . . . . . . 8 (((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑓 ∈ (Fil‘ 𝐽) ∧ (𝐿𝑓𝐴 ∈ (𝐽 fLim 𝑓)))) → 𝐿 ∈ (Fil‘ 𝐽))
21 filfbas 22999 . . . . . . . 8 (𝐿 ∈ (Fil‘ 𝐽) → 𝐿 ∈ (fBas‘ 𝐽))
2220, 21syl 17 . . . . . . 7 (((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑓 ∈ (Fil‘ 𝐽) ∧ (𝐿𝑓𝐴 ∈ (𝐽 fLim 𝑓)))) → 𝐿 ∈ (fBas‘ 𝐽))
23 fmfil 23095 . . . . . . 7 (( 𝐾𝐾𝐿 ∈ (fBas‘ 𝐽) ∧ 𝐹: 𝐽 𝐾) → (( 𝐾 FilMap 𝐹)‘𝐿) ∈ (Fil‘ 𝐾))
2419, 22, 15, 23syl3anc 1370 . . . . . 6 (((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑓 ∈ (Fil‘ 𝐽) ∧ (𝐿𝑓𝐴 ∈ (𝐽 fLim 𝑓)))) → (( 𝐾 FilMap 𝐹)‘𝐿) ∈ (Fil‘ 𝐾))
25 filfbas 22999 . . . . . . . 8 (𝑓 ∈ (Fil‘ 𝐽) → 𝑓 ∈ (fBas‘ 𝐽))
2625ad2antrl 725 . . . . . . 7 (((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑓 ∈ (Fil‘ 𝐽) ∧ (𝐿𝑓𝐴 ∈ (𝐽 fLim 𝑓)))) → 𝑓 ∈ (fBas‘ 𝐽))
27 simprrl 778 . . . . . . 7 (((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑓 ∈ (Fil‘ 𝐽) ∧ (𝐿𝑓𝐴 ∈ (𝐽 fLim 𝑓)))) → 𝐿𝑓)
28 fmss 23097 . . . . . . 7 ((( 𝐾𝐾𝐿 ∈ (fBas‘ 𝐽) ∧ 𝑓 ∈ (fBas‘ 𝐽)) ∧ (𝐹: 𝐽 𝐾𝐿𝑓)) → (( 𝐾 FilMap 𝐹)‘𝐿) ⊆ (( 𝐾 FilMap 𝐹)‘𝑓))
2919, 22, 26, 15, 27, 28syl32anc 1377 . . . . . 6 (((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑓 ∈ (Fil‘ 𝐽) ∧ (𝐿𝑓𝐴 ∈ (𝐽 fLim 𝑓)))) → (( 𝐾 FilMap 𝐹)‘𝐿) ⊆ (( 𝐾 FilMap 𝐹)‘𝑓))
30 fclsss2 23174 . . . . . 6 ((𝐾 ∈ (TopOn‘ 𝐾) ∧ (( 𝐾 FilMap 𝐹)‘𝐿) ∈ (Fil‘ 𝐾) ∧ (( 𝐾 FilMap 𝐹)‘𝐿) ⊆ (( 𝐾 FilMap 𝐹)‘𝑓)) → (𝐾 fClus (( 𝐾 FilMap 𝐹)‘𝑓)) ⊆ (𝐾 fClus (( 𝐾 FilMap 𝐹)‘𝐿)))
3110, 24, 29, 30syl3anc 1370 . . . . 5 (((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑓 ∈ (Fil‘ 𝐽) ∧ (𝐿𝑓𝐴 ∈ (𝐽 fLim 𝑓)))) → (𝐾 fClus (( 𝐾 FilMap 𝐹)‘𝑓)) ⊆ (𝐾 fClus (( 𝐾 FilMap 𝐹)‘𝐿)))
32 fcfval 23184 . . . . . 6 ((𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝑓 ∈ (Fil‘ 𝐽) ∧ 𝐹: 𝐽 𝐾) → ((𝐾 fClusf 𝑓)‘𝐹) = (𝐾 fClus (( 𝐾 FilMap 𝐹)‘𝑓)))
3310, 11, 15, 32syl3anc 1370 . . . . 5 (((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑓 ∈ (Fil‘ 𝐽) ∧ (𝐿𝑓𝐴 ∈ (𝐽 fLim 𝑓)))) → ((𝐾 fClusf 𝑓)‘𝐹) = (𝐾 fClus (( 𝐾 FilMap 𝐹)‘𝑓)))
34 fcfval 23184 . . . . . 6 ((𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝐿 ∈ (Fil‘ 𝐽) ∧ 𝐹: 𝐽 𝐾) → ((𝐾 fClusf 𝐿)‘𝐹) = (𝐾 fClus (( 𝐾 FilMap 𝐹)‘𝐿)))
3510, 20, 15, 34syl3anc 1370 . . . . 5 (((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑓 ∈ (Fil‘ 𝐽) ∧ (𝐿𝑓𝐴 ∈ (𝐽 fLim 𝑓)))) → ((𝐾 fClusf 𝐿)‘𝐹) = (𝐾 fClus (( 𝐾 FilMap 𝐹)‘𝐿)))
3631, 33, 353sstr4d 3968 . . . 4 (((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑓 ∈ (Fil‘ 𝐽) ∧ (𝐿𝑓𝐴 ∈ (𝐽 fLim 𝑓)))) → ((𝐾 fClusf 𝑓)‘𝐹) ⊆ ((𝐾 fClusf 𝐿)‘𝐹))
3717, 36sstrd 3931 . . 3 (((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑓 ∈ (Fil‘ 𝐽) ∧ (𝐿𝑓𝐴 ∈ (𝐽 fLim 𝑓)))) → ((𝐾 fLimf 𝑓)‘𝐹) ⊆ ((𝐾 fClusf 𝐿)‘𝐹))
38 simprrr 779 . . . 4 (((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑓 ∈ (Fil‘ 𝐽) ∧ (𝐿𝑓𝐴 ∈ (𝐽 fLim 𝑓)))) → 𝐴 ∈ (𝐽 fLim 𝑓))
39 simpl3 1192 . . . 4 (((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑓 ∈ (Fil‘ 𝐽) ∧ (𝐿𝑓𝐴 ∈ (𝐽 fLim 𝑓)))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴))
40 cnpflfi 23150 . . . 4 ((𝐴 ∈ (𝐽 fLim 𝑓) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹))
4138, 39, 40syl2anc 584 . . 3 (((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑓 ∈ (Fil‘ 𝐽) ∧ (𝐿𝑓𝐴 ∈ (𝐽 fLim 𝑓)))) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹))
4237, 41sseldd 3922 . 2 (((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑓 ∈ (Fil‘ 𝐽) ∧ (𝐿𝑓𝐴 ∈ (𝐽 fLim 𝑓)))) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝐿)‘𝐹))
437, 42rexlimddv 3220 1 ((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝐿)‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wrex 3065  wss 3887   cuni 4839  wf 6429  cfv 6433  (class class class)co 7275  fBascfbas 20585  Topctop 22042  TopOnctopon 22059   CnP ccnp 22376  Filcfil 22996   FilMap cfm 23084   fLim cflim 23085   fLimf cflf 23086   fClus cfcls 23087   fClusf cfcf 23088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-fin 8737  df-fi 9170  df-fbas 20594  df-fg 20595  df-top 22043  df-topon 22060  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-cnp 22379  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-fcls 23092  df-fcf 23093
This theorem is referenced by:  cnpfcf  23192
  Copyright terms: Public domain W3C validator